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a b s t r a c t

We present an algorithm and its implementation to calculate the properties of electronic excitations in
molecules and clusters from first principles, using time-dependent density functional theory (TDDFT).
The algorithm assumes the use of some localized functions as a basis set to represent the spatial degrees
of freedom. It relies on an iterative computation of the induced density according to the Dyson-like
equation for the linear response function. The current implementation is built upon so-called numerical
atomic orbitals. It is suitable for a wide variety of density functional theory (DFT) software. In this work,
we demonstrate TDDFT calculations starting from preceding DFT runs with SIESTA, GPAW and PySCF
packages, while a coupling with the other DFT packages such as Fireball and OpenMX is planned. The
mentioned packages are capable of performing ab initio molecular dynamics simulations, and the speed
of our TDDFT implementationmakes feasible to perform a configuration average of the optical absorption
spectra. Our code is written mostly in Python language allowing for a quick and compact implementation
of most numerical methods and data-managing tasks with the help of NumPy/SciPy libraries and Python
intrinsic constructs. Part of the code iswritten in C and Fortran to achieve a competitive speed in particular
sections of the algorithm. Many parts of the current algorithm and implementation are useful in other ab
initio methods for electronic excited states, such as Hedin’s GW , Bethe–Salpeter equation and DFT with
hybrid functionals. Corresponding proof-of-principles implementations are already part of the code.
Program summary
Program Title: PySCF-NAO
Program Files doi: http://dx.doi.org/10.17632/9wgp6255hn.1
Licensing provisions: Apache License, Version 2.0
Programming language: Python (2 or 3), Fortran90 and C
Supplementary material:We provide the source code and input files to organize example and benchmark
calculations discussed in the paper.
Nature of the problem: The study of the interaction of photons and charged particles with matter depends
upon understanding of electronic excitations in matter. A description of the electronic excitations within
time-dependent density functional theory (TDDFT) is popular due to the combination of its reasonable
accuracy and its relatively low computational cost. Despite the relative simplicity of TDDFT, its application
becomes difficult for quantum systems containing several hundreds of atoms. Suchmicroscopically small
systems are relevant in organic electronics, plasmonics and surface science. Therefore, much work has
been devoted to the development of adequate electronic structure methods. Moreover, thermal motion
of atoms and the presence of solvents affects the properties of electronic excited states in a decisive
manner. Modeling of the electronic excited states including the system’s dynamics within the Born–
Oppenheimer approximation leads to even stronger efficiency requirements from the corresponding
electronic structure methods.
Solution method: We discretize the Kohn–Sham Hamiltonian using a basis of numerical atomic orbitals.
The induced electronic density is determined in response to a dipolar external perturbation, according to
linear response TDDFT, using an iterative algorithm. Themethod takes advantage of the sparsity generated
by the finite support of the numerical atomic orbitals. This allows computing the dynamical polarizability
of molecules and clusters containing up to several thousands of atoms.
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Additional comments including Restrictions and Unusual features: The current algorithm is formulated
within the formalism of density response functions. Therefore, one needs to know explicitly an exchange–
correlation kernel (second-derivative of energy with respect to variation of the density). The exchange–
correlation kernel is analytically known for (semi-)local density functionals, but not for the hybrid density
functionals. To date, we implemented only the local density approximation (LDA) for the exchange–
correlation kernel to be used with the iterative TDDFT in PySCF-NAO. Spin-restricted formalism for finite
systems is covered in the current implementation. Moreover, although our code is prepared to compute
the electronic response of all-electron systems, our current implementation of an auxiliary product basis
(density-fitting basis) is working best in combination with the use of pseudopotentials.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Interaction of photons and charged particles with matter is
at the root of several widely studied, technologically important
phenomena. The behavior of electrons in matter is decisive to the
unfolding and outcomes of these phenomena, leading to the notion
of electronic excitations. A theoretical description of electronic ex-
citations becomes desirable, important and difficult as the devices
shrink to the nanometer scale. There is a vast number of theories
and methods to cope with the electronic excitations and an even
larger number of their realizations. Among such theories, time-
dependent density functional theory (TDDFT) is probably the most
popular because of its accuracy and relatively low computational
cost [1–3]. Being an ab initio theory, TDDFT is in principle as
accurate as the employeddensity functional approximation allows.
The computational cost of the TDDFT-based methods depends on
the chosen density functional and on the quality of the real-space
discretization among other factors. TDDFT has been realized in
many software packages. For the sake of presentation, wemention
here a few open-source packages such as Abinit (Yambo), Quan-
tum Espresso, Octopus and GPAW.

The packages Abinit (Yamboo) [4,5] and Quantum Espresso
[6,7] profit from the plane-wave (PW) basis sets for the discretiza-
tion of the real-space degrees of freedom. They can be used to
model both extended and finite systems with a linear response
TDDFT and other more sophisticated methods for excited states,
allowing to study complex organic chemicals at interfaces [8,9],
molecular crystals [10,11], and semi-conductor clusters containing
dozens of atoms [12–15].

The comprehensive suite for TDDFT Octopus profits from the
real-space grids (RSG) for discretization of the Kohn–Sham (KS)
Hamiltonian [16]. InOctopus, TDDFT has been realized bothwithin
linear response approximation (Casida and Sternheimer formula-
tions) as well as with wave-packet time-propagation techniques.
The code can be used to model a wide range of finite systems
such as large organic compounds [17], metallic [18–20] and semi-
conductor clusters [21] containing several hundreds of atoms.

The Python-based suite GPAW [22,23] is a comprehensive and
easy-to-use software which is capable to use PW, RSG as well
as numerical atomic orbitals (NAO) to discretize the real-space
variables. A propagation of NAO-discretized wavepackets is par-
ticularly suitable for plasmonic applications. For instance, silver
and sodium clusters containing several hundreds of atoms were
studied with GPAW [24,25].

Besides the named packages, there are a few open-source suites
realizing density functional theory (DFT) for which the option of
linear response TDDFT is limited or missing. Such packages as
Fireball [26], SIESTA [27,28],OpenMX [29], Plato [30],DFTB+ [31]
profit from relatively short-ranged NAOs generating sparse and
parsimonious representations of the KS Hamiltonian. These pack-
ages are designed for efficient ab initiomolecular dynamics (AIMD)
simulations and there is a considerable interest in coupling AIMD

with TDDFT [32–37] and other methods [38–41] for electronic ex-
cited states. In this work, we present a method and an implemen-
tation of a fast linear response TDDFT solver for finite systems. The
method is suitable for KSDFTHamiltonianswith semi-local density
functionals and using basis sets of localized functions. The particu-
lar implementation is applicable to Hamiltonians discretized with
NAOs and with the core electrons substituted by norm-conserving
pseudo-potentials (PP). Although the scope of the present work is
limited to finite systems, we aim to realize the iterative TDDFT also
for systems with periodic boundary conditions. In our experience,
NAOs can be more advantageous than PWs for systems with large
unit cells, such as organic crystals or interfaces [42].

The rest of the paper is organized as follows. In Section 2, we
briefly review the equations of DFT and linear response TDDFT
for the sake of a self-contained presentation. The basis set of
atomic orbitals will be introduced in Section 3. In Section 4, we
discuss the general scheme of the iterative TDDFT solver. More
details on the construction of the product basis set are given in
Section 5. In Section 6, we discuss the implementation of the
iterative TDDFT solver, covering installation, unit testing and run-
ning in Sections 6.1–6.3, correspondingly. Finally, we present two
benchmark calculations in Section 7 and conclude in Section 8.

2. Generalities of linear response TDDFT within KS framework

Within KS DFT, the electron density is given by [43,3]

n(r) =

∑
i∈occ

fiΨ ∗

i (r)Ψi(r), (1)

where the summation goes over the occupied KS orbitals Ψi(r)
and fi are the occupation numbers. In this work, we focus on spin-
saturated electronic structure calculations for the sake of compu-
tational efficiency. The KS orbitals satisfy the eigenvalue equation

ĤKSΨi(r) = EiΨi(r), (2)

where ĤKS and Ei are KS Hamiltonian and eigenenergies. The low-
est eigenenergy orbitals are occupied according to a Fermi–Dirac
statistics so that the density (1) integrates to the necessary number
of electrons. The KS Hamiltonian ĤKS is a single-particle operator.
The KS Hamiltonian is an effective Hamiltonian that depends on
the electron density (1), and possibly on its derivatives or even
on the KS orbitals themselves, subject of the particular choice of
the density functional approximation. Linear response TDDFT is
a perturbation theory built on top of DFT and it depends chiefly
on the particular choice of the density functional approximation.
Our iterative TDDFT is suitable for the widely used local density
approximation [44,43] (LDA) and generalized gradient approxi-
mation [45,43,46] (GGA) of an exchange–correlation (xc) energy
density functional Exc = Exc[n]while a large part of themethod can
be applied to more complex density functionals within a suitable
framework. In LDA or GGA, the KS Hamiltonian reads

ĤKS(r) = T̂ + Vext(r) + VHxc[n](r), (3)
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where T̂ is the kinetic energy operator, the external potential
Vext(r) is created by bare nuclei in full-potential (FP)DFT or PPs rep-
resenting the core electrons in valence-electron DFT. The density-
dependent, single-particle potential VHxc[n](r) ≡ δEHxc[n]/δn is
split into Hartree, exchange and correlation parts [43].

In linear response TDDFT, we want to find an induced density
change δn(r, ω) upon a small, generally time-dependent change in
the external potential δVext(r, ω)

δn(r, ω) =

∫
χ (r, r ′, ω)δVext(r ′, ω)dr ′, (4)

where χ (r, r ′, ω) is the so-called (linear) interacting density re-
sponse function. The utility of the density response function χ (r,
r ′, ω) is many-sided. In this work, we use the density response
functionχ (r, r ′, ω) to define the optical polarizability tensor in the
dipole approximation

Pij(ω) =

∫∫
riχ (r, r ′, ω)r ′

jdrdr
′, (5)

where i and j are indices enumerating Cartesian directions i =

(x, y, z). The optical polarizability Pij(ω) is connected to the op-
tical absorption cross-section and is one of the target properties
of our method. Unfortunately, the interacting response function
χ ≡

δn
δVext

cannot be expressed explicitly via KS orbitals Ψi(r), but
satisfies a Dyson-like equation [1]

χ (r, r ′, ω) = χ0(r, r ′, ω) +∫∫
χ0(r, r ′′, ω)K (r ′′, r ′′′)χ (r ′′′, r ′, ω)dr ′′dr ′′′, (6)

where χ0 ≡
δn
δVeff

is the non-interacting density response function
which, in contrast to the interacting response function χ , can
be expressed explicitly via KS orbitals. The effective potential is
defined by Veff(r) ≡ Vext(r) + VHxc[n](r), thence the interaction
kernel becomes K ≡

δVHxc
δn . It is straightforward to find the in-

teraction kernel K in LDA or GGA. Therefore, the linear response
TDDFT becomes numerically tractable in the frequency domain.
Unfortunately, the formalism of density response functions is not
suitable for popular hybrid density functionals relying on the Fock-
like operators [47,48]. Likewise, the formalism of density response
functions is applicable neither to simple time-dependent Hartree–
Fock nor to Bethe–Salpeter equation solvers. In all the mentioned
cases, the formalism of density response functions is not appli-
cable because the interaction kernel K appearing in the Dyson
equation (6) is unknown and existing approximations are cumber-
some [49,50]. However, using the formalismof two-particleGreens
function or Casida equation one can get the induced two-particle
density for Hamiltonians that contain Fock-like operators. Hybrid
functionals are being used increasingly often because of their good
balance between accuracy and computational cost. In spite of this
relevance, because of the difficulties to formulate the problem
using only changes of the density, the hybrid functionals lie outside
the scope of the iterativemethod described in this paper. However,
our construction of a basis set to express the products of atomic
orbitals is relevant for the treatment of the Fock operator and
indeed this approach has been used in Hartree–Fock, Hedin’s GW
approximation and Bethe–Salpeter calculations [38,51,39,52].

The non-interacting response function χ0(r, r ′, ω) in Eq. (6)
possesses a well-known Lehmann representation [53]

χ0(r, r ′, ω) =

∑
nm

(fn − fm)
Ψ ∗

n (r)Ψm(r)Ψ ∗
m(r ′)Ψn(r ′)

ω − (Em − En) + iε
. (7)

Here the products of KS eigenstates Ψn(r) appear and ε is a reg-
ularization parameter which phenomenologically accounts for the
lifetime of the electronic excited states. A discretization of the real-
space degrees of freedom in the KS Hamiltonian (3), in the Dyson

equation (6) and in the non-interacting response function (7) will
be discussed in the following.

3. Numerical atomic orbitals as a basis set

Several AIMD packages profit from the parsimonious expansion
of the KS orbitals Ψi(r) in terms of atomic orbitals (AO)

Ψi(r) =

∑
a

X i
af

a(r − Ra). (8)

Here the expansion coefficients X i
a are determined while self-

consistently solving Eqs. (1) and (2) and the atomic orbitals f a(r)
are normally centered on atomic nuclei at positions Ra. Moreover,
the atomic orbitals f a(r) possess a radial-angular decomposition

f a(r) = f a(r)Yla,ma (r̂), (9)

where Yl,m(r̂) are spherical harmonics which depend on the spatial
direction r̂ and f a(r) are corresponding radial functions. The spher-
ical harmonics Yl,m(r̂) are chosen as real spherical harmonics [54]
when we store the matrix elements of Hamiltonian, overlap and
other tensor quantities. However, we often use complex spherical
harmonics to facilitate the derivation and computation of the real-
spherical-harmonics matrix elements, using the algebra of angular
momentum [55] effectively.

There could be several radial orbitals f a(r) per angular mo-
mentum l, but the radial orbitals are usually independent on the
magnetic quantum numbers m. In order to assert in the notation
for the radial orbitals f a(r) their independence on the magnetic
quantum numberma, we use also a multiplet index ζ

f aζ ,m (r) = f ζ ,m(r) = f ζ (r)Ylζ ,m(r̂). (10)

In this notation, the multiplet index ζ and magnetic quantum
numberm determine the orbital index a = aζ ,m.

Representation of radial orbitals. In the case of NAO, the radial
functions f ζ (r) are given on a radial grid {rn}, n ∈ [0 . . .Nr − 1]
and possess a well-defined radial cutoff rζcut. The radial grid can be
chosen equidistant for PP calculations, but we use a logarithmic
grid, profiting from the existing matrix-element machinery. The
choice of logarithmic-grid parameters is covered in Section 5.5. The
reliance of the logarithmic radial grid leaves open thepossibility for
FP calculations reusingmost of thematrix-elementmachinery. For
thematrix elements of the overlap, Coulomb interaction and Lapla-
cianwe use themethods involving fast spherical Bessel transforms
put forward by J. Talman [56–60]. The computation of Coulomb
matrix elements between non-overlapping functions is done via
a multipole method by D. Foerster [61]. For the matrix elements of
the xc potential/kernel, we use the numerical methods of integra-
tion in real space that are common in quantum chemistry [62–65].

Local product basis: difficulties and advantage. Having chosen a
compact expansion of the KS orbitals via NAOs, we face the dif-
ficulty of working with the products of KS orbitals that appear
in the response function (7). The basis set of NAOs is normally
too restricted to represent all the products of NAOs and we need
another (auxiliary) basis set to expand these products. One can
introduce an auxiliary product basis (PB) {Fµ(r)}which is adequate
to expand the products of NAOs

f a(r)f b(r) = V ab
µ Fµ(r), (11)

where V ab
µ are the product vertex coefficients. Here and later in

this paper, we understand summation over indices which appear
twice on the right-hand side of an equation only. The product
vertex coefficients V ab

µ and PB functions Fµ(r) can be constructed
according to several methods [66–70]. All these methods preserve
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locality of the PB functions Fµ(r). The locality of the PB functions
Fµ(r) and NAOs f a(r) results in a double sparsity of the product
vertex coefficients V ab

µ in the limit of large molecules. The double
sparsity of the product vertex V ab

µ means that there are only O(N)
non-zero elements of the product vertex V ab

µ albeit each of its
indices a, b, µ runs in the O(N) range, where N is the number of
atoms in the molecule.

The localized basis sets have an important potential advantage
over the non-local PW basis sets. In order to demonstrate this
advantage, we contemplate the product vertex V ab

µ for the PW
basis. The exponential function satisfies the fundamental multi-
plicative identity ex+y

= exey, hence the product vertex V GG′

G′′ for
the plane waves eiGr is given by a Kronecker delta V GG′

G′′ = δG+G′,G′′ .
Despite the remarkable simplicity of the product vertex V GG′

G′′ , it
contains O(N2) non-zero elements which is worse than O(N) for
the localized NAOs.

Similarly to NAO, any local basis set will have this advantage
over the non-local PW basis set. However, the gain will depend on
the particular type of the local basis set: on the localization (or
spatial extent) of the basis functions and on the construction of
the product vertex V ab

µ . For instance, RSG would have a strikingly
simple product vertex with O(N) non-zero elements. However,
RSGs generate a raw, overgenerous description of virtual states. In
contrast to RSG, NAOs are rather economical and permit to expand
the occupied and lowest-energy unoccupied states with sufficient
accuracy. The characterization of NAO’s accuracy is beyond the
scope of the paper butwe refer the reader to several representative
convergence studies using the NAOs [38,71–78].

4. Iterative computation of the optical polarizability

After inserting Eqs. (8) and (11) into the non-interacting re-
sponse function (7), we obtain

χ0(r, r ′, ω) = Fµ(r)χ0
µν(ω)F

ν(r ′), (12)

where the non-interacting response matrix is given by

χ0
µν(ω) =

∑
nm

(fn − fm)
(Xn

a V
ab
µ Xm

b )(Xm
c V cd

ν Xn
d )

ω − (Em − En) + iε
. (13)

Furthermore, we assume for the interacting response function
χ (r, r ′, ω) a similar expansion as in Eq. (12)

χ (r, r ′, ω) = Fµ(r)χµν(ω)F ν(r ′). (14)

Using the expansions (12) and (14), we turn the Dyson equation (6)
into the corresponding matrix expression [32,78]

χµν(ω) = χ0
µν(ω) + χ0

µµ′ (ω)Kµ
′ν′χν′ν(ω). (15)

Here, Kµ
′ν′ are the matrix elements of the interaction kernel

K (r, r ′) computation of which we discuss in Section 4.2.
Inserting the expansion (14) into the optical polarizability (5),

taking into account Eq. (15) and the symmetry of response func-
tions χ T

= χ , we get

Pij(ω) = dµi χ
0
µµ′ (ω)[δµ

′

ν − Kµ
′ν′χ0

ν′ν(ω)]
−1dνj , (16)

where δµ
′

ν is Kronecker delta, dµi =
∫
Fµ(r)ri dr are the dipole

moments of the PB functions Fµ(r). The dipolemoments dµi appear
because of the dipolar approximation to the electron–photon cou-
pling δVext(r, ω) = Ê0(ω) · r , where Ê0(ω) is the unit-vector in the
direction of the external electric field. Since we assume the linear
response regime, a possible frequency dependence of the strength
of the external electric field E0(ω) can be easily taken into account
after the unit-strength induced density δn(r, ω) is determined.

In order to derive Eq. (16),we used the transpose of the interact-
ing polarizability χ T to facilitate a straightforward interpretation
of intermediate quantities. Namely, we split the calculation of the
polarizability (16) into a calculation of the effective KS potential
δVµeff,j(ω)

[δ − Kχ0(ω)]δVeff,j(ω) = dj, (17)

an application of the non-interacting response to get the induced
density δnj(ω) = χ0(ω)δVeff,j(ω), and a final scalar product with
the dipole moments Pij(ω) = diδnj(ω). In the last equations, we
discarded the product indices µ, ν for the sake of clarity. The
linear equation (17) is solved with a generalized minimal residual
method (GMRES) [79,80] that belongs to Krylov subspacemethods.
Krylov subspacemethods require only the action of amatrix A onto
given vectors. In our case, the matrix reads A = δ − Kχ0(ω). The
product of this matrix with a vector z can be computed in terms
of subsequent matrix–vector products of the non-interacting re-
sponse function χ0(ω) with the vector z and of the interaction ker-
nel K with yet another vector y = χ0(ω)z. The interaction kernel
K is a dense matrix and the latter product Ky can be understood
as a simple matrix–vector product. The former product with the
response functionχ0(ω) is more involved, but owing to the explicit
expression (13), it can be split further into a sequence of matrix–
vector and matrix–matrix operations. The sequence of operations
for the matrix–vector product χ0(ω)z must be chosen carefully, as
we discuss below.

4.1. Application of the non-interacting response function

There are several possible sequences of operations for the non-
interacting response function χ0(ω) to be applied to a vector z.
The most advantageous sequence known to us is schematically
depicted in Fig. 1. In Fig. 1, we show with boxes the sequence of
operations—the inner boxes indicate operations that precede the
operations indicated by the outer boxes. In our previous publica-
tion [78], we proposed this sequence as an alternative diminishing
thememory footprint. The practice has revealed that this sequence
is also the fastest alternative for any appreciable system’s size (for
example, for more than 55 atoms for the compact silver clusters as
those described in Section 7.1). The procedure starts with a trace
over the product-function index ν to obtain a sparse overlap-like
matrix αcd

= V cd
ν zν . Notice that the sparsity of the matrix αcd

originates in the spatial localization of atomic orbitals c and d. This
operation takes asymptotically O(N) operations and, as a matter
of fact, it claims only a minor portion of run time. In the second
step, we multiply the sparse matrix αcd with the occupied-state
eigenvectors βcn

= αcdXn
d . The product takes O(N2) operations

because the eigenvectors Xn
d form a dense matrix. In the third

step, we multiply the (dense) matrix βcn with the virtual-state
eigenvectors γmn

= Xm
c β

cn. This operation takes O(N3) operations,
but it becomes the largest time consumer only for big systems (for
instance, for the icosahedral cluster Ag923 and larger). In the next
step, the matrix γmn is updated with the frequency denominator
γ̃mn

= γmn ((fn − fm)/(ω − (Em − En) + iε)). The update is not
shown in Fig. 1 and takes a negligible run time. The remaining
steps include a matrix–matrix multiplication βn

b = Xm
b γ̃

mn, which
takes O(N3) operations and a matrix–matrix multiplication αab =

βn
bX

n
a in which only those elements corresponding to overlapping

orbitals a and b need to be computed, hence requiring only O(N2)
operations. Finally, a trace over orbital indices a and b delivers the
result δnµ = V ab

µ αab.
The sequence described above has not been realized before in

sparse matrix algebra and its superiority for practical computa-
tions was not recognized in our previous publications. Namely, in
our previousworks [32,81–83,78],wewere using an alternative se-
quence in which an auxiliary table Aan

µ = V ab
µ Xn

b was precomputed
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Fig. 1. The operation sequence for the action of the non-interacting response
function χ0(ω) on to a vector z. This sequence is adopted in this work as the best
alternative in terms of memory footprint and speed.

to diminish the number of mathematical operations. This table
takes O(N2) storage elements of random-access memory (RAM)
that is of the same order as required by the KS eigenvectors Xn

a .
However, the absolute amount of RAM needed for the table Aan

µ

is much larger than the RAM occupied by the KS eigenvectors Xn
a

and by the vertex coefficients V ab
µ . For instance, for the icosahedral

silver cluster Ag1415 exemplified later in this work, with a double-
zeta polarized basis set of NAOs and single-precision numbers, the
RAM taken by the auxiliary table Aan

µ will be ∼111Gigabytes (GB),
while it is only ∼1.7GB for the KS eigenvectors Xn

a and ∼0.21GB
for the dominant product vertex V cd

ν . Comparing these figures, we
identify the auxiliary table Aan

µ as a hampering bottleneck. Apart
from the potential RAM shortage, the size of the table Aan

µ causes
the machine cache to be easily obstructed and the computation
gets slower than with the current sequence of operations.

In current implementation, the product vertex V ab
µ is stored in

compressed sparse row (CSR) format, with the product index µ
treated as row index and the orbital indices a and b treated as a
composite, column index. The effectively matrix–vector operation
αcd

= V cd
ν zν is realized with the aid of SciPy library—the standard

Python library for scientific computations [84]. Moreover, for the
NAO basis sets we are working with, it is not worth to implement
the next matrix–matrix product βcn

= αcdXn
d in sparse-matrix

algebra because of a noticeable degradation of the computational
performance with respect to dense-matrix algebra. This solution
could be easily improved once we meet a calculation in which this
step becomes a bottleneck.

4.2. Application of the interaction kernel in large calculations

The interaction kernel K appearing in Eqs. (6), (16), (17) is a
matrixKµν ≡ KµνH +Kµνxc , where theHartreeKµνH and xcKµνxc kernels
read

KµνH =

∫
Fµ(r)F ν(r ′)

|r − r ′|
dr dr ′

; Kµνxc =

∫
Fµ(r)Kxc(r)F ν(r)dr. (18)

In this work, we use LDA kernel Kxc(r) that is local in spatial
variables [85–87,78]. Due to this locality and to the finite support
of the PB functions Fµ(r), the matrix Kµνxc is sparse. However, the
Hartree kernel matrix KµνH is dense for localized functions Fµ(r).
We suggested above that the whole application of TDDFT kernel
can be sought as a simple matrix–vector operation. However, for
large systems, the storage of the O(N2) matrix elements of TDDFT
kernel Kµν is prohibitive. For instance, in case of silver clusters,
using the atom-centered PB set, we have to spend about 60 product
functions Fµ(r) per atom. Therefore, for such large clusters as
Ag5083 [88], the storage only of the (upper part of) interaction ker-
nel Kµν in single precision would take 173GB which is prohibitive
for many machines.

In order to alleviate the problem, we suggest here a more
sophisticated kernel operator. Namely, the Hartree kernel KµνH is
split into overlapping and non-overlapping parts. The overlapping
part of the Hartree kernel KµνH consists ofmatrix elements between
spatially overlapping PB functions Fµ(r) and F ν(r), while the rest
of the Hartree kernel forms the non-overlapping part. The non-
overlapping part of Hartree kernel KµνH can be computed much

faster than the overlapping part, using the multipole moments of
PB functions [61,32]. Therefore, in order to save RAM, we store
only the overlapping part, spending O(N) memory elements, while
the remaining non-overlapping elements are computed on the fly
just before a matrix–vector operation Kz that is organized block-
wise. In fact, this sophistication slows down the whole iterative
loop only by a minor amount. This more sophisticated matrix–
vector procedure was tested in our closely related Fortran90 code
MBPT-LCAO [34]. To date, this feature is not yet a part of the
Python implementation. Therefore, in result Section 7.1, we show
the polarizabilities of silver clusters of up to 1415 atoms which is
still affordable using the dense-matrix kernel Kµν .

5. Construction of the product basis set

The expansion of the products of atomic orbitals (11) in terms of
local auxiliary functions is rather ad hoc, not yet fully specified. So
far,weusedonly theprincipal double sparsity of the product vertex
coefficients V ab

µ , originating from the locality of NAOs f a(r) and
the PB functions Fµ(r). However, the run-time performance of a
particular realization of the expansion (11)will depend on the con-
struction details of the PB functions Fµ(r) and the complementary
product vertex V ab

µ . In this section, we describe our construction of
the PB functions Fµ(r) and the PB vertex V ab

µ .
In our approach, the PB functions are constructed as linear

combinations of the original NAOs’ products f a(r)f b(r). The linear
combinations are chosen in away to achieve theirmutual orthogo-
nality. The orthogonality of the PB set implies its minimal possible
size. Unfortunately, the orthogonalization of all theNAOs’ products
within the system destroys the locality of the original products.
Therefore, in order to preserve locality, we limit sets of the original
NAOs’ products f a(r)f b(r) before their orthogonalization. Namely,
we perform the orthogonalization procedure individually, for each
atom pair within the molecule. The orthogonalization procedure
within the atom-pair constraint leads to what we call a domi-
nant product basis [69,89,32,38]. Naturally, there are intra-atomic
orbital pairs (when atomic orbital indices a and b belong to the
same atom) and inter-atomic orbital pairs (when atomic orbital
indices a and b belong to different atoms). The intra-atomic and
inter-atomic pairs are treated differently while constructing the
dominant product basis, generating the dominant functions cen-
tered on atoms Aµ(r) and between atoms Fµ(r) for intra-atomic
and inter-atomic pairs, correspondingly. By construction, the inter-
atomic dominant functions Fµ(r) are optimal for a given atom pair.
However, the inter-atomic dominant functions Fµ(r) of different
atom pairs may overlap strongly, causing the unwanted collinear-
ity in the PB set. Fortunately, we have found that the inter-atomic
functions Fµ(r) can be reexpressed F µ̃(r) = cµ̃ν A

ν(r) in terms of
subsets of the intra-atomic functions Aν(r), owing to the rather
large spatial extent of NAOs. The intra-atomic functions Aν(r) are
not so strongly overlapping because their centers are always sepa-
rated by at least one inter-atomic distance. Thus, we use the atom-
centered functions Aν(r) for discretizing the interaction kernel (18)
and the induced density (4). However, the application of the non-
interacting response function to a vector (see Section 4.1) works
fastest using the full basis of dominant products, i.e. containing the
inter-atomic dominant functions F µ̃(r) because the corresponding
dominant product vertex V ab

µ̃
contains a smallest number of non-

zero entries among different choices of PB sets.
To summarize, in our approach we use two types of expansions

for the product of orbitals f a(r)f b(r). The first expansion is the
dominant product basis defined via a local pair-by-pair orthog-
onalization of the orbitals’ products. We only keep those linear
combinations with a norm larger than certain threshold value. The
functions in the dominant product basis can be intra-atomic

f a(r)f b(r) = V ab
µ Aµ(r),
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where the orbital indices a and b belong to the same atom, or inter-
atomic (bilocal)

f a(r)f b(r) = V ab
µ Fµ(r),

where the orbital indices a and b belong to different atoms. This
dominant product expansion is the most adequate for the appli-
cation of the non-interacting response in the iterative procedure.
The second expansion of NAOs’ products uses only intra-atomic
dominant functions Aµ(r) as explained in detail in Ref. [78]. We
find that this atom-centered expansion is sufficiently accurate and
extremely convenient to expand the interaction kernel (18) and the
induced density (4).

According to the motivation above, we detail the initial expan-
sion of the NAO products (11), using the atom-centered, intra-
atomic dominant functions Aν(r)

f a(r)f b(r) = V ab
µ̃ cµ̃ν A

ν(r), (19)

where V ab
µ̃

is the dominant product vertex, cµ̃ν is a matrix of
conversion between the inter-atomic dominant functions F µ̃(r)
and the intra-atomic dominant functions Aν(r). Atom-centered
auxiliary basis to express the density and products of orbitals is
commonly used in quantum chemistry [66,67,90,68,70,78]. How-
ever, our combination is optimal for the representation of the
PB vertex V ab

µ . The optimal representation is important for the
fast application of the non-interacting response function discussed
above in Section 4.1.

In the rest of this section, wewill provide further details to real-
ize the expansion (19). In Section 5.1, we describe a general proce-
dure to identify the linearly independent product functions Fµ(r).
The treatment of the intra-atomic and inter-atomic atom pairs is
detailed in Sections 5.2 and 5.3, correspondingly. In Section 5.4,
we detail the usage of only intra-atomic, atom-centered functions
Aν(r) to represent all the atomic orbital products f a(r)f b(r). An op-
timal choice of numerical grids is discussed in Section 5.5. Finally,
in Section 5.6, we discuss the accuracy and performance issues
of presented numerical procedures when they are applied to FP
calculations.

5.1. General procedure to identify the dominant functions

The dominant functions Fµ(r) are in principle linear combina-
tions of original products of atomic orbitals [69]

Fµ(r) =

∑
ab

Cµabf
a(r)f b(r), (20)

which are chosen orthogonal to each other. The orthogonality of
the functions Fµ(r) is required with respect to a Coulomb metric
|r − r ′

|
−1, which is a common wisdom [67,70,91,92] in quantum

chemistry

gµν =

∫∫
Fµ(r)F ν(r ′)

|r − r ′|
drdr ′

= δµνΛµ. (21)

Here, we keep the eigenvalue Λµ because we do not demand the
normality of the basis functions Fµ(r). The orthogonality condi-
tion (21) can be satisfied if the coefficients of expansion Cµab in the
linear combination (20) are eigenvectors of the Coulomb metric
gab,cd between the products of atomic orbitals

gab,cdCνcd = ΛνCνab, (22)

where the matrix elements gab,cd are defined by

gab,cd
=

∫∫
f a(r)f b(r)f c(r ′)f d(r ′)

|r − r ′|
drdr ′. (23)

Moreover, the eigenvalue Λν is a Coulomb-weighted measure
of the importance of a given linear combination Fµ(r) by virtue

of Eq. (21). In practice, we use this eigenvalue to discard unimpor-
tant functions F ν(r) for which Λν < Λtol according to a tolerance
thresholdΛtol. A transformation of the linear combination (20) into
the product vertex coefficients in the ansatz (11) is straightforward
because the Coulomb metric gab,cd is symmetric: Cµab = V ab

µ .
The Coulombmetric (23) should not be computed for thewhole

molecule at once, because the problem will get too resource-
demanding for any appreciable molecular size. The set of atomic
orbitals {f a(r)} participating in the linear combination (20) must
be limited both because the resulting PB {Fµ(r)} must remain
localized and because the burden of diagonalization (22) is too high
for any appreciable molecule/basis size. The construction of or-
thogonal linear combinations based on diagonalization procedures
has been proposed numerous times [93,94,90,95,92]. However,
the diagonalization had been used either in the context of intra-
atomic products or in the context of the whole molecule. Using the
diagonalization for individual inter-atomic pairswas proposed and
first realized by D. Foerster [69] to the best of our knowledge. We
call the functions constructed in this way ‘‘dominant functions’’.
The dominant functions are built individually for each atom pair.
Moreover, we distinguish between local (intra-atomic) and bilocal
(inter-atomic) pairs, using the angular momentum symmetry to
further facilitate the diagonalization procedure (22).

5.2. Intra-atomic dominant functions

For the calculation of the Coulombmetric (23) when all orbitals
f a(r), f b(r), f c(r) and f d(r) belong to the same center, we will use
well-known expressions for the product of two spherical harmon-
ics [55]

Yl1,m1 (r̂)Yl2,m2 (r̂) =

∑
L,M

GL,M
l1,m1,l2,m2

Y∗

L,M (r̂) (24)

via Gaunt coefficients GL,M
l1,m1,l2,m2

, the Fourier transform of the
Coulomb interaction
1
|r|

=
4π

(2π )3

∫
exp(ir · p)

p2
dp, (25)

and the expansion of plane-wave exp(ir ·p) into spherical harmon-
ics

exp(ir · p) = 4π
∑
lm

il jl(rp) Y∗

lm(r̂)Ylm(p̂). (26)

Using also the orthogonality of the spherical harmonics, we obtain

gab,cd
= 8

∑
LM

GL,M
la,ma,lb,mb

GL,M
lc ,mc ,ld,md

g la,lb,lc ,ld
L . (27)

Here a symmetry-adapted Coulomb metric g la,lb,lc ,ld
L reads

g la,lb,lc ,ld
L =

∫
f abL (p)f cdL (p)dp, (28)

where f abL (p) is a spherical Bessel transform of the radial–orbital
products∫

f a(r)f b(r)jL(rp)r2dr = f abL (p). (29)

Due to the independence of the symmetry-adapted Coulomb
metric g la,lb,lc ,ld

L on the magnetic quantum number M , the orthog-
onal linear combinations (20) can be identified separately for each
possible angular momentum L ∈ [0 . . . 2lmax], where lmax is the
maximal angular momentum present in the basis of NAO for a
given atomic specie. Correspondingly, constructing the product
vertex (11) for the atom-centered situation, we use the product of
spherical harmonics (24) and NAOs in the form (10) to obtain

f a(r)f b(r) =

∑
L,M,ζ

GL,M
la,ma,lb,mb

(−1)MFL,ζ (r)YL,M (r̂), (30)
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where the radial functions FL,ζ (r) = f κ (r)f η(r) are simply prod-
ucts of original radial functions. The index ζ enumerates the set
of multiplet indices κ and η. The set of multiplet indices κ and
η is limited according to the triangular inequalities |lκ − lη| ≤

L ≤ |lκ + lη| for Gaunt coefficients [55] hence determining the
size of original products sets {ζ } for each angular momentum L
individually {ζ } = {ζ }(L). The symmetry-adapted Coulomb metric
(28) will have the dimension of the set {ζ }. Therefore, inserting the
Kronecker delta δζ ,ζ ′ = X L,µ

ζ X L,µ
ζ ′ expressed via the eigenvectors

X L,µ
ζ of the symmetry-adapted metric (28) into Eq. (30), we obtain

a symmetry-adapted decomposition of the orbital product

f a(r)f b(r) =

∑
L,M,µ

V L,ab
µ F L,µ(r)YL,M (r̂), (31)

where

V L,ab
µ = GL,M

la,ma,lb,mb
(−1)MX L,µ

ζ (32)

and

F L,µ(r) =

∑
ζ

X L,µ
ζ FL,ζ (r). (33)

After the radial functions F L,µ(r) and vertices V L,ab
µ are identi-

fied, we reenumerate the dominant function indices (L, µ) → µ to
exclude their explicit dependence on the angular momentum L as
long as it is convenient in the iterative TDDFT.Moreover, in practice
weuse real spherical harmonics [54] and the vertex coefficientsV ab

µ

are transformed accordingly.

5.3. Inter-atomic dominant functions

In the case of bilocal atomic pairs, we expand the products of
original atomic orbitals into spherical harmonics, centered at a
point Rc on the line segment joining the two centers. A general
form of this expansion was derived by J. Talman [60]. We will
restate his result here to discuss the use of the remaining cylindrical
symmetry

f a(r − Ra)f b(r − Rb) = F ab(r)

=

∑
jLL′M

(
la lb j
ma mb m

)(
j L L′

m M M ′

)
× XjLL′ (|r − Rc |, R, α)YLM (r̂ − Rc)YL′M ′ (R̂), (34)

where Rc = αRa + (1 − α)Rb, 0 < α < 1, R = Rb −

Ra and the Wigner 3j coefficients
(

la lb lc
ma mb mc

)
are used. The

functions XjLL′ (r, R, α) are expressed in a rather involved form [60].
To simplify the angular-momentum algebra, we diagonalize the
correspondingmetric gab,cd in a customcoordinate systemwith the
origin at Rc and the z axis rotated to the joining line R = Rz . In this
case, the spherical harmonic YL′M ′ (ẑ) =

√
(2L′+1)

4π δM ′,0 is nonzero
only for the projection of angular momentum M ′

= 0, and the
sum over the magnetic number M reduces to a single term M =

ma + mb. Correspondingly, the projection of angular momentum
M is used to generate the symmetry-adapted orthogonal linear
combinations of the original orbital products. Analogously to the
case of local pairs above, we generally write

f a(r − Ra)f b(r − Rb) =

∑
p

VM,ab
p FMp(r), (35)

where VM,ab
p = δma+mb,M , FMp(r) =

∑
LF

Mp
L (r)YLM (r̂) and the set

of products {p} depends on the magnetic number M = ma + mb
due to the properties ofWigner 3j coefficients. The radial functions

FMp
L (r) are computed via Talman’s general formulation (34). The

symmetry-adapted metric

gp,p′

M =

∫∫
FMp(r)FMp′

(r ′)
|r − r ′|

drdr ′ (36)

has the dimension of the set {p} and is computed in momentum
space via (fast) Bessel transforms [56,59,96]. After the symmetry-
adapted metric gp,p′

M is diagonalized, we use its eigenvectors to
form the identity δp,p′ = XMµ

p XMµ
p′ . Inserting this identity into the

original expansion (35), we obtain

f a(r − Ra)f b(r − Rb) =

∑
µ

VM,ab
µ FMµ(r), (37)

where VM,ab
µ =

∑
pV

M,ab
p XMµ

p and FMµ(r) =
∑

pX
Mµ
p FMp(r). After

the verticesVM,ab
µ are identified,we transform these to the usewith

real spherical harmonics and rotate them to the common system
of coordinates using the Wigner rotation matrices for real-valued
harmonics [54].

5.4. Atom-centered product basis

The dominant functions described above have been used in
TDDFT,Hedin’sGW approximation and for solving aBethe–Salpeter
equation [32,38,52]. However, the construction of dominant func-
tions Fµ(r), although mathematically rigorous and optimal within
a given pair, has the disadvantage of generating functions with
large overlapswithin thewholemolecule. This disadvantage stems
from the localization constraints in the construction procedure,
which is repeated independently for each atom pair. Namely,
the dominant functions Fµ(r) constructed for different pairs can
strongly overlap because the procedure is ‘‘aware’’ of only one
atom pair at a time. This fact results in a redundant description
of the orbital products when looking from the perspective of the
whole system. Such redundancy leads to a large count of the
product functions Fµ(r) and a large number of iterations in the
calculation of the effective perturbation (17).

Adapting the idea of auxiliary basis sets from quantum chem-
istry, we reexpress the inter-atomic, bilocal dominant functions

Fµ(r) = cµν A
ν(r), (38)

in terms of the atom-centered, intra-atomic functions Aν(r) in a
sphere of contributing centers. For the local functions Aν(r), we use
the atom-centered, intra-atomic functions discussed in Section 5.2.
Experience tells that even two contributing centers can describe
bilocal NAO products fairly well [92]. The projection coefficients
can be readily calculated cµν = Mµν′ (vν

′ν)−1 in terms of matrix
elements of the Coulomb interaction

Mµν
=

∫
Fµ(r)Aν(r ′)

|r − r ′|
dr dr ′, vµν =

∫
Aµ(r)Aν(r ′)

|r − r ′|
dr dr ′. (39)

The inversion of the metric vµν is still a local operation because
the set of the atom-centered indices µ, ν is limited to a sphere of
contributing centers. The sphere of contributing centers is centered
at the midpoint between atoms and it contains not more than a
given number of atoms (by default 8) located closest to the center
of the sphere.

The conversion ansatz (38) is useful because the conversion of
a vector in the atom-centered basis to the dominant product basis
and back turns out to be a fast operation. For instance, it is faster to
apply the non-interacting responseχ0

µν(ω) in the basis of dominant
functions Fµ(r) and, on the other hand, it is faster to compute and
easier to store thematrix elements of the interaction kernel KµνHxc in
the basis of atom-centered functions Aµ(r).

Using the product vertex ansatz (11) and the expansion of
bilocal products (38), we get the factorized form of the product
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vertex ansatz (19). The form (19) is used in the iterative procedure
described in Section 4. The advantage of the form is a small number
of non-zero elements in the table V ab

µ̃
and a fast matrix–vector

multiplication with the (sparse) matrix cµ̃ν .

5.5. Numerical grid parameters

As we mentioned in Section 3, the distinguishing feature of
NAOs is the use of numerical grids to discretize the radial functions
f ζ (r) of atomic orbitals (10). The choice of numerical grid is of
great importance because it determines the calculation methods
of matrix elements. For instance, in SIESTA and GPAW packages,
the numerical grid is chosen to be equidistant, with different grid
spacing hζ for each radial orbital f ζ (r).

In contrast to SIESTA, we use a logarithmic grid to represent
the radial functions in PySCF-NAO. This choice is motivated by
the construction of PB set (covered above in this section), where
we employ essentially quantum-chemistry matrix elements of
Coulomb interaction. The logarithmic grid discretization of radial
orbitals has been used in FP Hartree–Fock calculations by J. Tal-
man [57,58,60] and we adopt his methods. The methods rely on
Fourier (Bessel) transform of radial functions [56,59,96]. Therefore
the logarithmic grid is defined for both real and momentum space

rn = exp(log(rmin) +∆ρn), kn = rn · (kmax/rmax),
n ∈ [0 . . .Nr − 1] . (40)

where ∆ρ = (log(rmax) − log(rmin))/(Nr − 1) and Nr is the
total number of points in the grid. There are four independent
parameters rmin, rmax, kmax and Nr defining the logarithmic grids
(40). In order to avoid interpolations, we use only one set of
logarithmic-grid parameters rmin, rmax, kmax and Nr for all radial
functions {f ζ (r)} present in calculation. These parameters must be
chosen carefully for an accurate representation of all equidistant-
grid NAOs we import from SIESTA. Fortunately, this choice can be
done automatically.

For an accurate representation of the SIESTA, equidistant-
grid NAOs on the sole logarithmic grid, we choose the minimal
distance to the origin in real-space grid rmin = hζ |min coinciding
with the minimal grid spacing among all NAOs present in the
calculation. Furthermore, the extent of the grid in the momentum
space kmax is proportional to the inverse of rmin. Hence, we fixed
kmax = 1/(πrmin) after experimenting with the accuracy of the
recomputed overlap matrix. Using the same method of accuracy
estimation, we determined the optimal value for the maximal
extent of the logarithmic grid in real space rmax. The maximal
extent rmax must be a multiple of maximal extent of NAOs rζcut
because otherwise the small density of the logarithmic grid at the
end of the grid prohibits an accurate description of equidistant-
grid NAOs. We found that rmax = 2.3 · rζcut|max allows for an
accurate representation of SIESTA’s orbitals on the logarithmic
grid (40). Finally, the (default) number of points Nr = 1024 = 210

in the logarithmic grid was chosen such to speedup fast Fourier
transforms and to ensure a similar grid spacing near the origin
between the logarithmic and equidistant grids. The latter condition
is satisfied by this choice because SIESTA’s NAOs are given by
default in 500 points and, in order to ensure a similar grid spacing
near the origin in the logarithmic and equidistant grids, we have to
use more points in the logarithmic grid.

5.6. Limitation of present dominant products

The described above numerical procedures are well suitable
for pseudo-potential calculations. However, our efforts to apply
the dominant product basis to the FP calculations were rather

numerically expensive enterprises [51,52]. The implemented con-
struction of the PB set is based on the decomposition of the inter-
atom orbital products by J. Talman [60]. This decomposition was
originally devised to be applied to FP Hartree–Fock calculations.
However, in order to achieve an acceptable accuracy, a careful
choice of the expansion center is necessary that in general is
different for each pair of numerical orbitals. An implementation
of the inter-atomic dominant functions using the radial-function
pairs rather than the atomic pairs is easy to realize [51,39,52].
However, the result will be an unwieldy set of NAO-like functions
centered in many points between atoms. The angular momentum
of these NAO-like functions is not bound from above either in PP
nor in FP calculations. However, the angular momentum cutoff
must be set higher in FP calculations. Owing to these accuracy-
related issues, the computational performance of the multi-center
construction degrades dramatically (∼50 times for any molecule
containing more than half a dozen of atoms) comparing to that of
the one-center-per-atom-pair dominant functions. The dominant
functions are accurate and fast for PP orbitals, generating the
sparse dominant product vertex V ab

µ̃
in expansion (19). However,

the degradation of computational performance for the FP orbitals
and a poor scaling of performance with the cardinal number (or
angular momentum content) of NAO basis set suggest consider-
ing alternative solutions. Perhaps real-space techniques of dealing
with the inter-atomic orbital products could be used [70,91,97] for
competitive FP calculations.

6. Implementation of the iterative TDDFT

The algorithm we sketched above was implemented in Fortran
language several years ago [33,34,32]. The current implementation
is done in the Python language while keeping the computationally
intensive parts in a Fortran library. Moreover, we implemented the
iterative TDDFT as a part of the Python package PySCF [98,99],
profiting from the open-source distributed development cycle. The
PySCF package is a large, well-documented suite of programs for
quantum chemistry focused on FP, Gaussian-based calculations.
The basic methods we use to calculate the matrix elements (be-
tween NAOs) are compatible with the FP framework. Therefore
we can couple our algorithm to the PySCF’s mean-field objects
and profit from other functionality already implemented in PySCF.
Several of our pull requests have been accepted in a dev branch of
PySCF main repository [99], while most recent developments are
available in the nao branch of our fork [100].

The design of the classes/functions/file distribution is largely
determined by the PySCF package. Namely, we added a subdirec-
tory nao to the root directory of the PySCF package to place there
our Python code, and a subdirectory lib/nao to place there our
Fortran library. A suite of unit tests is placed in the subdirectory
nao/test. A standard Python module unittest is used to orga-
nize the unit tests (see Section 6.2). Users can view these unit tests
also as examples for their own calculations. Several examples are
discussed below in Section 6.3.

6.1. Download and installation

We are using open-source, distributed development environ-
ment provided by the GitHub platform [101]. GitHub provides
a convenient interface for the distributed development, involving
many contributors. One can profit from this distributed devel-
opment environment employing the version control system git,
which is widely popular and recommended for managing the pre-
sented source code. For instance, on a Linux machine, one can get
the recent version of the NAO-enabled PySCF package by using the
sequence of commands shown in Fig. 2.
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Fig. 2. The sequence of commands to get the source code from our fork of the PySCF
package.

This sequence downloads (clones) the main repository into
a directory pyscf and switches (checkout) to the branch nao.
There is also a way of contributing to open source projects in a
fork/push/pull-request cycle. We gather some recommendations
tailored to our package on a Wiki page [102].

The design of the installation procedure follows the PySCF
package. Namely, we are using cmake utility to compile the low-
level libraries, thenwe adjust aPYTHONPATH shell variable to allow
Python finding the PySCF modules. After the PySCF repository
is cloned, and the nao branch is checked out, user is supposed
to step in into the directory lib and perform a compilation pro-
cedure. For instance, on a Linux machine, one can compile the
NAO-enabled PySCF package by using a sequence of commands
shown in Fig. 3. The sequence of commands in Fig. 3 uses the stan-
dard gcc/gfortran compilers and creates a set of low-level li-
braries. These librarieswill be using system’s blas/lapack/fftw
libraries, which must be installed prior to the compilation of the
PySCF package. The architecture file lib/cmake.arch.inc con-
tains machine and installation-specific options. The file is not part
of the distribution, because it is very much machine dependent.
Instead, we provide a collection of these architecture files in the
directory lib/cmake_arch_config/. The user may find ready-
to-go architecture files for popular Python distributions such as
Intel Python and Anaconda in this directory. Further installation
instructions for the NAO-enabled PySCF package are gathered in
the file lib/nao/README.md. We advise the users to review it to
get the peak-performance and troubleshooting tips.

6.2. Unit tests

We provide a few dozens of unit tests for the essential func-
tionality of the NAO package. We advise to verify these tests
before using the NAO-enabled PySCF package. A standard module
unittest drives these small calculations. The tests are imple-
mented as Python scripts and gathered in the directory nao/test.
One can start them one-by-one from the command line

python nao/test/test_0001_system_vars.py
python nao/test/test_0002_prod_basis.py
...

or in a single run

python -m unittest discover nao/test

If the installation has been done correctly, there should be no
error reported. However, some known issues are discussed in the
readme file lib/nao/README.md.

Fig. 4. Polarizability of H2 molecule computed via Casida method with GTOs in
the PySCF package and via the iterative TDDFT with NAOs. The absolute difference
between two curves is small in a wide frequency range ω = 0 . . . 2 a.u.

6.3. Running

After the installation and testing procedures are successfully
finished, the user can do DFT/TDDFT calculations using only small
scripts, profiting from the flexibility of Python language. Below
we discuss five representative applications of NAO-enabled PySCF
package illustrating its useful features. The source of the examples
and benchmarks we present below is available in the supporting
information [103].

6.3.1. Using Gaussian-based DFT to perform iterative TDDFT
The first example is a stand-alone TDDFT calculation for which

the DFT calculation is done with Gaussian type of orbitals (GTO),
within the PySCF package. To start the iterative TDDFT, we built
an interface with a mean-field class of the PySCF package. The
product basis we implement in the current version is not generally
suitable for a FP calculation since it is thought mostly for PP-based
calculations (see Section 5.6). However, it is accurate enough for
hydrogen dimer and we have chosen this molecule. There is an
original implementation of the Casida approach to TDDFT [104,3]
in PySCF package. We use the PySCF’s class TDDFT to setup and
diagonalize the Casidamatrix. An average dynamical polarizability∑

iPii(ω)/3 is then composed from the eigenvectors of the Casida
matrix and the dipole matrix elements. Alternatively, we compute
the polarizability using our implementation of the iterative TDDFT
described above. The two calculations give very similar results as
one can see in Fig. 4.

The Python script to organize these two calculations is shown
in Fig. 5. A similar script is part of the testing suite nao/test/
test_0046*. In the first line of the script, we import the PySCF’s
objects gto, tddft and scf. The hydrogen molecule with given
coordinates of atoms and a correlation-consistent atomic orbital
basis set by Dunning [105] is defined in the second line. The KS

Fig. 3. The sequence of commands to compile the low-level libraries for the NAO-enabled PySCF package.
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Fig. 5. Python script to compute the average dynamical polarizability via the Casida formulation and via the iterative TDDFT for a hydrogen dimer molecule.

Fig. 6. SIESTA input file to organize the self-consistent LDA calculation of a water
molecule and storage of the KS Hamiltonian and orbitals.

calculation is defined in the 3rd line and performed in the 4th line,
while the Casida calculation is done by line 7.

The class tddft_iter is imported and initialized with the
eigenvectors from the precedingmean-field calculation in the lines
8 and 9. During construction of the class tddft_iter, the NAOs
are initialized, the PB is constructed and the interaction kernel (18)
is computed. The iterative procedure is done in the line 11, deliver-
ing the dynamical polarizability for a given list of (complex-valued)
frequencies omegas, which must be given in the Hartree atomic
units. In the last line 12, we compute the reference dynamical
polarizability, taking advantage of the PySCF’s Casida calculation
(in lines 5–7).

6.3.2. Reading data from SIESTA and doing TDDFT
Currently, we are able to use the PP starting points provided

by SIESTA [27,106,107] and GPAW [23] packages, while we are
confident that an interfacing with OpenMX [29,108] and Fireball
[26,109] packages is easy to achieve.

In this example, we use the data from a preceding SIESTA
calculation, providing the shape of NAOs, the geometry of the
molecule, the KS orbitals etc. The interface with SIESTA is done
via files. Most of the files would be generated upon a normal
self-consistent field loop, while the writing of KS Hamiltonian
and orbitals is requested by corresponding flags in the SIESTA
input file. To illustrate the interfacing with SIESTA package, we
have chosen a water molecule. SIESTA input file is shown in

Fig. 7. Python script for computing the average dipole polarizability in a random-
phase approximation starting from a data exported during a preceding SIESTA run.

Fig. 6. The two last lines are crucial for the post-SIESTA, iterative
TDDFT calculation. The option coop.write causes the export of
Hamiltonian and the KS eigenstates to the files water.HSX and
water.fullBZ.WFSX, correspondingly. The intended use of this
data in the SIESTA suite is for a post analysis of a crystal orbital
overlap population (COOP) [110] which explains the name of the
option. The optionxml.write causes anXMLversion of the output
to bewritten, fromwhichwe extract such information as geometry
of the molecule, Fermi energy, KS eigenvalues, unit cell vectors,
k-points etc.

After the SIESTA calculation is completed, we can load the
stored data and compute the optical polarizability, using the al-
gorithm described in Section 4. The corresponding Python script
is shown in Fig. 7. As one can see from the script, the class
tddft_iter can take the system label as an argument label in
order to load the data from the preceding SIESTA calculation.
During the class construction, the PB set (19) is generated and
the interaction kernel (18) is computed. The type of the inter-
action kernel could be set with the option xc_code. The option
xc_code is to a large extent inherited from the PySCF package.
However, we augmented the option by recognizing also a random-
phase approximation (RPA) via this option. In effect of the option
xc_code=’RPA’, we drop the xc part of the interaction kernel (18)
in the iterative TDDFT.

In the last three lines, a frequency grid is defined, the polariz-
ability is computed at these frequencies and the imaginary part of
the polarizability is stored in a text file for posterior analysis.

6.3.3. Reading data from ASE/GPAW and doing TDDFT
ASE and GPAW are a package bundle formanipulatingmolecular

geometries and electronic structure simulations [111,23] written
in Python. ASE is the abbreviation of atomic simulation environ-
ment. It serves to organize AIMD simulations among other tasks.
GPAW is an ab initio calculator of the electronic structure and prop-
erties. By default GPAW uses a projected augmented waves frame-
work for representing the core electron’s degrees of freedom and
RSGs to represent the spatial variables. However, theGPAWpackage
can also useNAOs and the norm-conservingVanderbilt PPs [112] in
DFT and TDDFT. Interfacing our codewith anASE/GPAW calculation
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Fig. 8. Python script for computing the KS ground state with the norm-conserving Vanderbilt pseudo-potentials.

Fig. 9. Python script for computing the average dipole polarizability fromGPAWoutput. The interacting polarizability (5) using Perdew–Zunger LDA and the non-interacting
polarizability (41) are calculated for comparison.

can be readily done in our TDDFT solver. Themotivation for the in-
terfacingwith GPAW package is to access advanced DFT functionals,
such as the Gritsenko–van Leeuwen–van Lenthe–Baerends [113]
functional,which is absent inmany of the other software packages.

In order to enable the Vanderbilt PPs, one has to download/
enable a special set ofGPAW ‘‘setups’’ namedsg15. This can be done
by running a command in terminal

gpaw install-data --sg15 /path/to/gpaw/setups/root

After installation of the sg15 setups, GPAWwill be ready to use the
norm-conserving PPs. Furthermore, to use the NAO basis sets, we
have to specify an "lcao" mode as shown in the script in Fig. 8.
In this script, we define a water molecule, run DFT calculation and
save a GPAW object H2O_gp containing the calculation to the file
gpaw.bin.

The next script in Fig. 9 would load the data, initialize the
object tddft_iter and compute the polarizability (5) for a set
of frequencies omegas, storing the result to files inter.ave.txt
and nonin.ave.txt for the averaged interacting polarizability
and non-interacting polarizability, correspondingly.

The non-interacting polarizability P0
ij (ω) is defined analogously

to the interacting polarizability (5), but using the non-interacting
response function

P0
ij (ω) =

∫∫
riχ0(r, r ′, ω)r ′

jdrdr
′. (41)

The non-interacting polarizability P0
ij (ω) can serve as a quick-to-

test quantity to control the quality of the PB set, and as a rough
approximation to the true interacting polarizability Pij(ω).

We skipped the import commands in Fig. 9. In this example,
we demand a higher accuracy of the iterative procedure set by the
tolerance tddft_iter_tol as an optional argument of the class
constructor tddft_iter(...).

In the following two examples, we discuss simpler calculations
which might be useful both for pure SIESTA users as well as for
users doing TDDFT calculations. In Section 6.3.4, we discuss the
calculation of density of states and projected density of states,
using SIESTA output. Although SIESTA suite already contains the
corresponding utilities, the user might find Python scripts more
convenient. In Section 6.3.5, we show how to calculate the KS
molecular orbital on a Cartesian grid and export this data into
the commonly used Gaussian Cube format. The plotting of 3-
dimensional isosurfaces of the molecular orbitals is a common
practice during the analysis of the excited states calculations
[74,9,21,76].

6.3.4. Computing DOS/PDOS with SIESTA output
In this example, wewill compute the density of states (DoS) de-

fined via the KS eigenvalues En and for a Lorentzian representation
of the Dirac δ-function

DoS(ω) = −
1
π

ℑ

∑
n

1
ω − En + iε

. (42)

A projected density of states (PDoS) is defined via the KS eigen-
values En, the KS eigenstate coefficients Xn

a and the atomic-orbital
overlap Sab

PDoS(l, ω) = −
1
π

ℑ

∑
n

Xn
a δl,laS

abXn
b

ω − En + iε
. (43)

In this example, the KS data will be imported from a preceding
SIESTA calculation. Assuming one has done the SIESTA calcula-
tion with the fdf-file as in Fig. 6, we load this data and perform
calculation of DoS and PDoS with a script shown in Fig. 10.

After the script is finished, the files dos.txt and pdos.txt are
written. The file dos.txtwill contain two columns: the real parts
of the set of frequencies omegas and the corresponding DoS (42).
The file pdos.txt will contain four columns: the real parts of the
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Fig. 10. Python script computing the DoS and PDoS with the KS orbitals and
eigenvalues imported from a preceding SIESTA calculation.

set of frequencies omegas, and corresponding PDoS (43) for each
of the possible atomic-orbital angular momenta l = 0, 1, 2. Other
types of molecular orbital overlap (Hamiltonian) population anal-
ysis is easy to achieve thanks to the flexibility of Python language.

6.3.5. SIESTA’s molecular orbitals in Gaussian cube
Plotting of the KS orbitals to a Gaussian Cube format can be

also easily accomplished with the imported data. Assuming one
has done the SIESTA calculation with the fdf-file as in Fig. 6,
we load this data and perform calculation of the highest-occupied
molecular orbital (HOMO) with the script in Fig. 11. Additionally
to the class scf, we used the class Cube from the pyscf.tools.
cubegen module. When constructed, the class Cube can use
any Python object with the methods atom_coords(), atom_
charge() and the attribute natm defined. Optionally, the num-
ber of grid points along the Cartesian axes can be also specified
during the construction of the class Cube. After initialization, the
class Cube can provide the Cartesian coordinates {r} of the 3-
dimensional grid via themethod get_coords(). In turn, the class
scf defines a method comp_aos_den() to compute the atomic
orbitals {f a(r)} for a set of Cartesian coordinates {r} and returning
these values in a dense matrix. The values of a molecular orbital
ψn(r) = Xn

a f
a(r) are given by a matrix–vector product, for which

we use the NumPy’s procedure dot(...). Finally, the Gaussian
Cube formatted file is written with the method write() of the
class Cube. The Gaussian Cube files can be viewed with a variety
of software including the XCrysDen package [114].

7. Benchmark

In the examples above, we illustrated the use of the PySCF-NAO
package for doing a variety of calculations for small molecules.

However, the main advantage of the iterative TDDFT is in its
ability to cope with much larger molecules and clusters, including
metallic clusters with many nearly-degenerated states in the KS
spectrum. In this section, we describe two sets of larger TDDFT cal-
culations: for silver clusters and for a set of geometries generated
in an AIMD simulation.

7.1. Optical absorption by silver clusters

Silver is a metal widely used in plasmonic applications
[115–117]. There were already several calculations for silver clus-
ters within TDDFT [118,24,20,78]. In particular, it has been shown
that simple DFT functionals describe reasonably well the localized
surface plasmonic resonance characteristic to the optical response
of silver clusters [118,18,24,20,78]. In this subsection, we perform
TDDFT calculations for a series of icosahedral clusters containing
between 3 and 8 layers of atoms, which corresponds to number
of atoms from 55 to 1415. The geometries of these clusters have
been generated with the ASE package, using a Python script shown
in Fig. 12. The geometry relaxation at DFT level preserves the
icosahedral symmetry and optical absorption spectra to a large
extent [78] although claiming a substantial computational effort.

Additionally to the electron-containing atomic layers in the
icosahedral clusters, we placed a layer of ghost atoms around each
of the clusters [73,78]. The ghost atoms provide basis functions to
better describe the decay of the electron cloud at the surface.

The generated geometries are stored to fdf-files in a Z-matrix
format. The procedure write_zmat() generates these files. It
is omitted in Fig. 12, but is defined in the file ico_geoms.py
provided in the supporting information [103].

To produce the DFT starting point, we used SIESTA calculations
defined by the fdf-file shown in Fig. 13. The basis of pseudo-atomic
orbitals (PAO) shall be defined via a PAO.Basis block, because we
intent to include ghost atoms. We use the double-zeta polarized
basis set with soft-confinement by Junquera et al. [119]. Because
the confinement radii are omitted in the fdf-file (set to zero in
the PAO.Basis block), they are determined by the energy shift pa-
rameter PAO.EnergyShift. The initial geometry is defined in the
included file "geometry.siesta.fdf". A conjugated-gradients
(CG) algorithm is used for geometry relaxation. The GGA functional
by Wu and Cohen [46] is used. We have chosen this functional
because it has been shown to provide the most accurate structural
parameters among the available semi-local functionals [120,121].
The rest of the parameters are chosen to achieve a stable con-
vergence of the KS self-consistent procedure. Their meaning is
described in the SIESTAmanual [107].

After the DFT calculation is finished, the iterative TDDFT calcu-
lation is started with the generated data very much similar to the

Fig. 11. Python script to compute the real-space representation of the HOMO orbital with the data imported from a preceding SIESTA calculation and generating the
Gaussian Cube file.
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Fig. 12. Python script to determine a series of geometries for icosahedral silver clusters.

Fig. 13. SIESTA input file for silver clusters.

example in Section 6.3.2. In contrast to Section 6.3.2, we compute
only the xx-component of the polarizability (5). Moreover, we use
the lowest-possible level of accuracy for the Lebedev–Laikov grid
to generate the xc kernel (18) and also less strict tolerances in the
generation of the intra-atomic (local) tol_loc and inter-atomic
(bilocal) tol_biloc dominant functions Fµ(r).
td = tddft_iter(label="siesta", level=0,
tol_loc=1e-4, tol_biloc=1e-6)
...
pxx = td.comp_polariz_inter_xx(omegas)
...

The relaxed tolerances lead to converged results nevertheless
because the PP NAOs are rather smooth functions. On the other
hand, the less strict tolerances speedup computations.

The polarizability Pxx(ω) is equal to the direction-averaged po-
larizability

∑
iPii(ω)/3 in the case of icosahedral cluster geome-

tries. Therefore, doing the calculation only for xx-component saves

about 2/3 of the run time in the iterative procedure. The iterative
procedure is done for a set of 100 frequencies between 1.0 and
6.0 eV, with an imaginary part equal to 0.15 eV. The interacting
polarizabilities are collected in Fig. 14, together with the frequency
of the surface-plasmon maximum ωsp as a function of the number
of atoms N in the clusters. Inspecting the polarizability in Fig. 14,
panel a, we see pronounced plasmonic peaks. The frequency of
this resonance peak is slowly changing with the cluster size, giving
rise to a 1/D scaling of the plasmonic frequency with the cluster
diameter D. In Fig. 14, panel b, we plot the energy of the resonance
ωsp as a function of N−1/3, because this is better defined than
the diameter D for these non-spherical clusters. The plasmonic
frequencies compare rather accurately to the other calculations.
For instance, for the smallest cluster Ag55, we get ωsp = 3.7 eV,
while Idrobo and Pantelides got 3.5 eV using LDA functional [122].
For the next-size cluster Ag147, we get ωsp = 3.5 eV, while
Lozano et al. [123] found 3.2 eVwith the Perdew–Burke–Ernzerhof
(PBE) functional [45].More detailed characterization of themethod
accuracy for the plasmonic response of silver clusters is available
elsewhere [78].

In Fig. 15, we show the run time needed to compute the po-
larizability on 12 cores of Intel R⃝ Xeon R⃝ Processor E5-2680 v3.
As it can be clearly appreciated, the actual run-time scaling is
closer to T ∼ N2 for the cluster sizes we consider. The number
of iterations per frequency grows very slowly with the size of the
cluster, varying fromapproximately 12 iterations per frequency for
Ag55 to approximately 20 iterations per frequency for Ag1415.

7.2. AIMD configuration average of the dynamical polarizability

In the final benchmark, we estimate the effect of the tempera-
ture fluctuations on the optical polarizability of a photo-chromic
diarylethene-derivative depicted in Fig. 16. The compound cor-
responds to the molecular derivative III in Ref. [124] (Figure 2a)
in the ‘‘closed’’ configuration. We assume a complete decoupling
of electronic and nuclear degrees of freedom, treating the latter
within the framework of Newtonian mechanics with the forces
computed from ground state DFT with PBE functional [45]. We
record the molecular geometries visited along the AIMD simula-
tion. These geometries are used in subsequent calculations of the
optical polarizability (5) to find the so-called configuration average
of the averaged polarizability

∑
iPii(ω)/3.

AIMD is done with SIESTA package, using a Nosé thermo-
stat [107,125]. The equilibrium geometry, from which the AIMD
propagation is started, is determined with a conjugated gradients
method with a tolerance to the remaining force of 0.02 eV/Å. After
the geometry relaxation,we computed the phononmodeswith the
VIBRA utility of the SIESTA package. The phonon calculation gave
usminimal (18.13 cm−1) andmaximal (3138.12 cm−1) frequencies
of vibrations. These frequencies translate to periods 1840 and
10.63 fs, correspondingly. These periods are used to choose the
time step and total time for AIMD runs. We performed two AIMD
simulations for the target temperatures T0 = 100 and 300 K. In
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Fig. 14. Interacting polarizability for a set of silver clusters of icosahedral shape (panel a) and the dependence of the frequency of the first maximum depending on the
number of atoms in the cluster (panel b).

Fig. 15. Total run time to compute the dynamical polarizability of the compact silver
clusters (see Fig. 14).

Fig. 16. Ball-stick model of the diarylethene derivative studied in Section 7.2.

both AIMD runs, we used a time step of 1 fs and propagated for
20000 steps. The excessive AIMD steps were used for a thermal-
ization period of 8000 and 12000 fs for target temperatures 100

and 300 K, correspondingly. The average of the instantaneous tem-
perature ⟨T ⟩ was close to the thermostat temperature T0 for both
target temperatures. Moreover, fluctuations of the instantaneous
temperature ⟨(∆T )2⟩ after thermalization periods were approxi-
mately T 2

0 /Cv, Cv = 3/2N , for both thermostat temperatures.
After the AIMD simulation is finished, SIESTA produces an

ANI file system_label.ANI, containing the generated molecular
geometries for all the AIMD steps. This file consists of XYZ files
stacked one after another. We split this file with a shell command
split

split -l 56 -d -a 6 siesta.ANI

generating a series of XYZ files named xNNNNNN. In the next step,
we use a subset of these files to organize another set of SIESTA
calculations followed by the (iterative) TDDFT calculations. In the
configurational average of the optical polarizability we have to
choose a subset of the 20000 configurations generated in AIMD
because TDDFT ismuchmore computationally expensive thanDFT.
Therefore, we have chosen a larger time step of 5 fs (which is still
twice smaller than the period of shortest vibrations) and averaged
over 800 configurations (which gives rise to a total average time
800 · 5 = 4000 fs that is more than twice larger than the longest
vibrationperiod). In the iterative TDDFT,weuse a small broadening
constant ε = 2 · 10−3 eV, resulting essentially in a stick spectrum
of the polarizability’s P(ω) imaginary part. Finally, we compute the
configuration average of the polarizability Pca(ω) with yet another
Lorentzian broadening εca = 0.0125 eV

Pca(ω) =
εca

πNc

∑
c

ImPc(ω′)
(ω − ω′)2 + ε2ca

. (44)

The broadening εca is chosen so as to simulate a finite spectral
resolution of the detector, which is sensitive enough not to smear
the features of the configuration average.

In Fig. 17, we show the configuration average of the dynamical
polarizability (44) for the thermostat temperatures T0 = 100 K
and T0 = 300 K together with the spectrum obtained at the
equilibrium geometry (labeled T0 = 0 K). The polarizability at
equilibrium geometry was computed with the Lorentzian broad-
ening εca = 0.0125 eV (i.e. the same as for the configurational
averaged spectra) and yet we scaled down the polarizability at
equilibrium geometry by a factor of four to approximately match
its magnitude to the thermally averaged spectra.
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Fig. 17. Configuration-average polarizability Pca(ω) of the diarylethene-derivative
depicted in Fig. 16 at different thermostat temperatures. The average is done with
a Nosé thermostat AIMD as implemented in the SIESTA package. The optical
spectrum at the equilibrium geometry is shown for comparison. Further details are
in the text.

The figure shows that the motion of nuclei dramatically affects
the dynamical polarizability of the molecule. The width of the
peaks increases with the ionic temperature T0. For instance, for
the first resonance given by HOMO–LUMO transition, the full-
width at half maximum is 0.16 and 0.28 eV for 100 and 300 K,
correspondingly. Moreover, the position of the first maximum is
noticeably red-shifted by the temperature fluctuations (1.97, 1.91
and 1.84 eV for 0, 100 and 300 K, correspondingly). A cross-check
calculation using all-electron GTO basis (631G) as implemented in
PySCF gives the first excitation energy at 2.03 eV (for equilibrium
geometry obtained by SIESTA and using PBE GGA for the xc density
functional) and 2.33 eV (using a B3LYP functional [126]).

The iterative TDDFTused on average 15 iterations per frequency
and per Cartesian component. The calculation took on average 1.61
s per frequency on an Intel machine Xeon(R) E5-2680 v3 2.50GHz,
using 6 computing cores and less than 2GB of RAM.

8. Conclusion and outlook

We presented an iterative method for linear response TDDFT
and a Python implementation of the method. The method is suit-
able for DFT starting points and LDA/GGA functionals. The imple-
mentation is done as a part of the PySCF package utilizing some
of its features. The implementation is interfaced with the SIESTA
package, while it can be readily used with GPAW and for light
molecules with full-potential calculations performed by PySCF.
The dipole polarizability tensor is computed by our code using an
efficient iterative algorithm.

We are currently working on the extension of our code to
estimate the electronic energy loss spectra [127]. The iterative
TDDFT can be readily used to compute non-resonant Raman spec-
tra by finite-differences of the dipole polarizability [128]. More-
over, many parts of the implementation can be used in more
complex electronic-structure methods such as time-dependent
Hartree–Fock, TDDFTwith hybrid functionals and GW /BSE solvers.
The corresponding proof-of-principles implementations are al-
ready included in the NAO-enabled PySCF package and will be a
subject of future work.
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