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Abstract

In this work we investigate the optical properties of small metallic clusters. We present an ab-initio study
of the polarizability and electrical field enhancement in the vicinity of metallic clusters and metallic cluster
dimers. The ab-initio approach is based on time dependent density functional theory (TDDFT). It allows
to confirm basic features of absorption spectra and to examine the spatial- and frequency-dependence of
the field enhancement in nanocavities of different sizes and shapes. For the calculations we employ a new
implementation of TDDFT in the linear response regime. This implementation is optimized for utilizing
locality of operators in order to construct an algorithm of low computation complexity. The TDDFT
code is interfaced with SIESTA, an efficient density functional theory implementation. During this thesis
the TDDFT code has been extended to compute the spatial distribution of the induced electrical field.
Moreover, low complexity algorithms employed in SIESTA and in our TDDFT code made possible to
compare electric field enhancement between sodium dimers (compose of clusters of up to 150 atoms).
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Chapter 1

Introduction

Electronic excitations, caused by irradiation with electrons, conventional or modern light sources (syn-
chrotron, ultrafast lasers), are key quantities for the study of materials, ranging from solids to atoms,
from surfaces to nanoscale systems. An improved understanding and prediction of the interaction of
radiation with matter is instrumental for the development of new technologies, as new functionalities in
bulk systems (e.g. optoelectronic) or, in the long term, in biological applications (“bottom up” assembly
of molecular machines1).

Moreover, recent progress in fabrication of nanodevices has made possible the production of nanoob-
jects of controlled composition and shape down to atomic precision. For instance, the production of
metallic clusters of a given size has been demonstrated [5]. Metallic clusters of Ag, Cu, Au have been used
to amplify Raman spectroscopy signal [6]. Recently, the interest of surface-enhanced Raman spectroscopy
has exploded for two major reasons. The first is the realization that under favorable circumstances,
Raman enhancements as large as 14 order of magnitude can be achieved, i.e., Raman spectra of single
molecules can be measured. The second reason is the recent interest in creating of an ultra-sensitive
sensing platform based on surface-enhanced Raman spectroscopy with molecular identification capabili-
ties. One of the mechanisms that leads to amplification of Raman signal is so-called electromagnetic field
enhancement [6]. The laser field used in the measurement of Raman shifts acts not only on the target
molecule but also on the objects which surround the molecule. If a metallic cluster is located in the
vicinity of the target molecule, then the electromagnetic field induced in the position of the molecule by
the cluster response can be much larger than the exciting of the laser field.

In this thesis we develop and use a suite of tools to compute the electromagnetic field enhancement.
We use methods which do not require the knowledge of the many-body wave-function of the system.
Namely, time-dependent density functional theory in the linear response regime. Density functional
theory (DFT) and time-dependent functional theory (TDDFT) have been extensively used to study
optical properties of nanomaterials as graphene nanoflakes [7] and metallic nanocavities [8]. A number of
recent publications [9, 10, 11] have treated the electronic response of plasmonic structures using state-of-
the-art TDDFT [12, 13]. However, in most of these works the structures were modeled using a simplified
description based on the so-called “jellium model”. In our work we perform an analysis of the spatial
distribution of the density change and of the electric field enhancement which is sometimes neglected
because of its computational cost. The induced electrical field is computed from the induced density
change according to classical expressions for the Coulomb field.

The thesis consists of two more chapters besides the introduction. In the following, we develop
theoretical description of time-dependent phenomena in many-electron systems. To achieve this, we

1Scientists have discovered how to use a single plastic molecule to drive a tiny machine. One frequency of light causes
the molecule to contract and another causes it to expand, making it move a board down up repeatedly [1]. For details on
molecular machines set in action by light, see Refs[2, 3, 4]
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CHAPTER 1. INTRODUCTION

develop in chapter 2 the basics theories used during this thesis. We show in section 2.1 how time-
dependent perturbation theory leads to a well-know expression for absorption cross section. In section 2.2.1
we describe basics of the density-functional theory that allow to simplify the complexity of the many-
electron systems to effective one-particle equations. In section 2.2.2 the time-dependent extension of
DFT will be discussed. Time-dependent density-functional theory in linear response regime will be used
in section 2.3 in order to derive expressions for the frequency-dependent induced density change and
the corresponding electrical field. In section 2.4 we present a small model of two interacting dipoles to
compare it with our ab-initio results. In chapter 3 we analyze our calculations of the polarizability and
electrical field enhancement for several Na clusters. Our conclusions are summarized in section 4.
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Chapter 2

Theory

In the atomic scale the objects show their quantum mechanical nature. As a consequence of this, quantum
mechanics is required for a reliable ab-initio description of the studied processes. In this work we focus
on phenomena which are determined by the so-called valence shell electrons. The description of these
electrons can be non-relativistic in many cases because relevant energy changes (a few eV’s) are small
comparing to the rest mass energy of the electron (0.511 MeV). Therefore, the wave-function of valence
shell electrons can be found as a solution of the well known Schrödinger equation (SE). The solution of
SE for a many electron system is a highly non-trivial problem. However, as shown by Kohn [14], many
phenomena are amenable for a description within the ab-initio framework of density-functional theory
(DFT). The modern formulation of DFT is based on the so-called Kohn-Sham (KS) scheme that reduces
to the one-particle SE for an effective electric potential. In our study we will rely on the KS formulation of
DFT. DFT allows to determine (in principle exactly) the electronic density of any static quantum system.
For instance, DFT is very successful for the determination of molecular geometries, statical dipoles and
other properties that are determined by valence-shell electrons.

The valence electrons determine the spectroscopic properties of materials at optical and infra-red wave-
lengths. The optical absorption and Raman spectroscopy employ lasers to perturb the atoms, molecules,
clusters or solids. Typically, laser fields are much smaller than the static fields experienced by valence
shell electrons. Therefore, it is usually possible to use perturbation theory to find an approximate solution
of time-dependent KS equations. In the following, we outline basics of the time dependent perturbation
theory on which a time-dependent perturbation theory in linear response regime is used (section 2.2). In
all the thesis, atomic units will be used (excepted when it is indicated).

2.1 The Time Dependent Perturbation Theory

In this section, we derive the photo-absorption cross section for one-electron quantum systems. This will
be done in the limit of small perturbation when the potential acting on the electron can be separated into
two parts: one large and static, another small and time-dependent. The Hamiltonian of our system can
be then written as

H = T + V0(r) + Vpert(r, t). (2.1)

Here T is the kinetic energy operator, V0(r) is the static part of the potential and Vpert(r, t) is the
time-dependent part of the electric potential. The full Schrödinger equation reads

Hψ(r, t) = i∂ψ(r, t)
∂t

, (2.2)

3



CHAPTER 2. THEORY

where ψ(r, t) is the one-particle wave-function. Solving the Schrödinger equation (2.2) for the wave-
function ψ(r, t) would give us all information about the evolution of the system.

If the full Hamiltonian H can be separated into a large static part and a small time-dependent part,
then SE (2.2) can be approximately solved in terms of the solutions of stationary SE. This is worth to do
because the solutions of the equation

{T + V0(r)}ψ0(r, t) = i∂ψ0(r, t)
∂t

, (2.3)

are usually easier to determine.

In the latter equation (2.3) the operator on the right hand side {T + V0(r)} is time-independent and
solutions ψ0(r, t) are amenable to a separation of variables. As there are many solutions of the equation
(2.3), we will provide an additional index n in order to distinguish them.

ψ0
n(r, t) = φn(r)e−iEnt, (2.4)

where En are the so-called eigen-energies. Moreover, time-independent parts of wave-functions φE(r)
satisfy the time independent eigenvalue equation

{T + V0(r)}φn(r) = Enφn(r). (2.5)

Time dependent perturbation theory (TDPT) is a method to obtain ψ(r, t) in terms of ψ0
n(r, t) in a

general case [15]. In the next subsection we will consider an idealized case of a quantum system with
two-levels only. Nonetheless, the two-levels example provides a direct and clear link to the phenomena
of spontaneous emission and induced transitions. The absorption cross-section, which is an observable in
the absorption spectroscopy will be derived in this minimal example.

2.1.1 Two-level System

For simplicity, the system treated here is composed of only one electron. We assume that there is just
two states of the unperturbed Hamiltonian H0, φa(r) and φb(r)

H0φa(r) = Eaφa(r), H0φb(r) = Ebφb(r), 〈φa| φb〉 = δab. (2.6)

Any state of the system can be expressed as a combination of the eigen states φa and φb

ψ(r, 0) = caφa(r) + cbφb(r). (2.7)

Without an external perturbation, any solution of the time dependent SE for the two-level system can be
expressed as a linear combination

ψ(r, t) = caφa(r)e−iEat + cbφb(r)e−iEbt, (2.8)

where |ca|2 + |cb|2 = 1 in order to ensure normalization to one electron. In the presence of a perturbation,
the coefficients ca and cb become time dependent (in the next equations, we drop spatial dependence)

4



2.1 The Time Dependent Perturbation Theory

ψ(t) = ca(t)φae−iEat + cb(t)φbe−iEbt. (2.9)

The whole problem is reduced to determine the coefficients ca(t) and cb(t). We next insert the ansatz
(2.9) into equation (2.2) and choose the time-dependent Hamiltonian H in the form H = H0 + H ′(t),
where H ′(t) is a time-dependent perturbation.

caH0φae−iEat + cbH0φbe−iEbt + caH
′φae−iEa + cbH

′φbe−iEbt =

i
(
dca
dt
φae−iEat + dcb

dt
φbe−iEbt − iEacaφae−iEat − iEbcbφbe−iEbt

)
.

(2.10)

The two first terms on the left hand side cancel with the two last terms on the right hand side, because
they obey the non perturbed time-dependent SE (2.3). Therefore, equation (2.10) simplifies to

caH
′φae−iEat + cbH

′φbe−iEbt = idca
dt
φae−iEat + idcb

dt
φbe−iEbt. (2.11)

After multiplying equation (2.11) by 〈φa| we get

ca
〈
φa
∣∣H ′ ∣∣φa〉 e−iEat + cb

〈
φa
∣∣H ′ ∣∣φb〉 e−iEbt = idca

dt
〈φa| φa〉 e−iEat + idcb

dt
〈φa| φb〉 e−iEbt. (2.12)

Because eigenstates φa and φb are orthonormal (〈φa| φb〉 = δab) one gets

ca
〈
φa
∣∣H ′ ∣∣φa〉 e−iEat + cb

〈
φa
∣∣H ′ ∣∣φb〉 e−iEbt = idca

dt
e−iEat. (2.13)

One introduces the matrix elements of the perturbation H ′ab = 〈φa|H ′(t) |φb〉, and reorder exponential
factors

dca
dt

= −i
(
caH

′
aa + cbH

′
abe−i(Eb−Ea)t

)
. (2.14)

By multiplying equation (2.11) by 〈φb| and using the same method, one obtains

dcb
dt

= −i
(
cbH

′
bb + caH

′
bae−i(Ea−Eb)t

)
(2.15)

Equations (2.14) and (2.15) can be written in a matrix form

−i
(

H ′aa H ′abe−i(Eb−Ea)t

H ′bae−i(Ea−Eb)t H ′bb

)(
ca
cb

)
= d

dt

(
ca
cb

)
(2.16)

If H ′ is small, then the matrix equation (2.16) can be solved by a process of successive approximation. In
case of optical excitations the diagonal matrix elements H ′aa(t) and H ′bb(t) vanish because of the spatial
dependence of the perturbation operator H ′(r, t). Therefore equation (2.16) reduces to


dca
dt

= −iH ′abe−iω0tcb,

dcb
dt

= −iH ′baeiω0tca, b
(2.17)

5



CHAPTER 2. THEORY

where ω0 = Eb−Ea. Let’s further assume that our two-level system was in the ground state at time t = 0,
and that our energy levels Ea and Eb are not equal (to mimic the situation in optical spectroscopy). For
instance if Ea < Eb, then we have to set

ca(0) = 1, cb(0) = 0. (2.18)

In the zeroth approximation ca(t) and cb(t)

c(0)
a (t) = 1, c

(0)
b (t) = 0. (2.19)

Let’s put the zeroth approximation for ca(t) and cb(t) into equations (2.17)

dc
(1)
a

dt
= 0, =⇒ c(1)

a (t) = 1, (2.20)

dc
(1)
b

dt
= −iH ′baeiω0tc(0)

a , =⇒ c1
b(t) = −i

ˆ t

0
dt′H ′ba(t′)eiω0t′ . (2.21)

The last equation shows that the occupation of level b is determined by the strength of coupling matrix
element H ′ba(t).

2.1.2 Transition Probability

Let’s now consider an atom exposed to a monochromatic, spatially homogeneous electric field

E = E0 cos(ωt). (2.22)

If the light polarization is chosen along the z−axis, then the perturbing part of the Hamiltonian reads

H ′(t) = −qE0z cos(ωt), (2.23)

where q is the charge of the electron. The matrix element H ′ba(t) will read

H ′ba(t) = −dbaE0 cos(ωt), where dba = q 〈φb| z |φa〉 . (2.24)

If an atom starts out in the lower state φa, and a polarized monochromatic beam is shinning on it, then
occupation of the upper state φb is given by a transition probability

Pa→b(t) = |cb(t)|2 ∼ |Vab|2
sin2((ω0 − ω) t2)

(ω0 − ω)2 . (2.25)

In order to derive the transition probability (2.25) we take the perturbation Hamiltonian (2.23) and
use TDDPT to find the coefficient cb(t) in the first order (equation 2.21), inserting equation (2.24) in
(2.21), one finds

c
(1)
b (t) = −iVba

ˆ t

0
cos(ωt′)eiω0t′dt′, (2.26)

=⇒ c
(1)
b (t) = − iVba

2

(
ei(ω0+ω)t − 1
ω0 + ω

+ ei(ω0−ω)t − 1
ω0 − ω

)
. (2.27)

6



2.1 The Time Dependent Perturbation Theory

If one assumes ω0 + ω � |ω0 − ω|, then occupation cb(t) is given by

cb(t) ≈ Vba
ei(ω0−ω) t

2

ω0 − ω
sin((ω0 − ω) t2). (2.28)

Therefore, the transition probability Pa→b = |cb|2 reads

Pa→b = |d|2E2
0

sin2((ω0 − ω) t2)
(ω0 − ω)2 where d = q 〈ψb| r |ψa〉 . (2.29)

This result should be interpreted as a probability of absorption of a photon of energy Ea − Eb = ω0.

2.1.3 Incoherent Perturbation

The transition probability found in the previous section assumes a monochromatic light. For polychro-
matic incoherent light, the net transition probability expressed in terms of the spatial distribution of the
light ρ(ω) takes the form

Pa→b(t) = 2|d|2
ˆ ∞

0
ρ(ω)

sin2((ω0 − ω) t2)
(ω0 − ω)2 dω (2.30)

The function sin2((ω0−ω) t
2 )

(ω0−ω)2 is sharply peaked about ω0 whereas ρ(ω) is ordinarily quite broad =⇒ ρ(ω) ∼
ρ(ω0). Therefore equation (2.30) in the case of a system dominated by a single transition ω0 can be
simplified to

Pa→b(t) = 2|d|2ρ(ω0)
ˆ ∞

0

sin2((ω0 − ω) t2)
(ω0 − ω)2 dω, (2.31)

Pa→b(t) = π|d|2ρ(ω0)t. (2.32)

The transition rate is then given by

Ra→b = dPa→b
dt

= π|d|2ρ(ω0). (2.33)

If we consider the general case of an incident non-polarized light coming from all directions, then we have
to consider an averaged transition rate

Ra→b = π|d|2

3 ρ(ω0). (2.34)

2.1.4 Einstein’s Coefficients A and B

Consider a container of atoms Na in the lower state |ψa〉, and Nb in the upper state |ψb〉. The Einstein’s
coefficients are the spontaneous emission rate A, the stimulated emission rate Bba and the absorption rate
Bab. On the basis of the definitions of Einstein’s coefficients, one can write the equation for occupations
change of state b

dNb

dt
= −NbA−NbBbaρ(ω0) +NaBabρ(ω0), (2.35)

7



CHAPTER 2. THEORY

In the thermal equilibrium dNb
dt = 0 and equation (2.35) provides the values of the spectral density ρ(ω)

at the transition energy ω0

=⇒ ρ(ω0) = A
Na
Nb
Bab −Bba

. (2.36)

From Boltzman statistics, one can write[16]

Na

Nb
= e−

Ea
kBT

e−
Eb

kBT

= e
ω0

kBT , =⇒ ρ(ω0) = A

e
ω0

kBT Bab −Bba
(2.37)

Moreover, Planck’s black body radiation reads

ρ(ω) = 1
π2c3

ω3

e
ω0

kBT − 1
. (2.38)

Comparing equations (2.37) and (2.38), one concludes that Bab = Bba

A = ω3
0

π2c3Bba, =⇒ A = ω3
0|d|2

3πc3 (2.39)

Moreover, Bbaρ(ω0) = Rb→a and stimulated emission rate becomes related to the dipole matrix elements
dba = 〈ψb|d |ψa〉

=⇒ Bba = π

3 |d|
2. (2.40)

2.1.5 Einstein’s Coefficients and Absorption Cross Section

It can be shown that for transition from a state |ψb〉 to a state |ψa〉, the absorption cross section σ can
be expressed by [17],

σ = 1
4λ

2
0A, (2.41)

where spontaneous emission rate A is given by equation (2.39) and the wavelength of light λ = 2πc
ω0

.
Elementary derivation then gives for absorption cross section

σ = πω0e
2

3c | 〈ψb| r |ψa〉 |
2. (2.42)

In the case of several transitions, one will find

σ = πω0
3ε0c

∑
i

|di|2, (2.43)

where i is an index which runs over different transitions.
As we will see below that optical cross section is proportional to the trace of the imaginary part of a
polarizability tensor P [18, 19]

σ(ω) = −4πω
3c Im [Pxx(ω) + Pyy(ω) + Pzz(ω)] (2.44)

8



2.2 Solving the Many-Body Problem

2.2 Solving the Many-Body Problem

The derivation in the last section is done only for one-particle systems. The many-body problem was not
considered so far. The difficulty of this problem is not to find the equation of motion of the electrons, but
to solve this equation. It is the famous non-relativistic many-body Hamiltonian

H = −
∑
i

∇2
i

2me
−
∑
I

∇2
I

2MI
+ 1

2
∑
i 6=j

1
|ri − rj |

−
∑
iI

ZI
|ri −RI |

+ 1
2
∑
I 6=J

ZIZJ
|RI −RJ |

. (2.45)

The small indices i, j run over electrons and the capital indices I, J run over nucleus. The equation (2.45)
contains the kinetic energy terms of nucleus and electrons, plus the instantaneous Coulomb interaction
between all pairs of bodies. The problem in many-body Quantum mechanics is to solve the corresponding
SE equation. The solution would require in principle to diagonalize this equation in order to obtain the
eigenvalues (energies) and the eigenfunctions (wave-functions ψ). Unfortunately, the wave-functions are
functions of every particle variables ψ(r1, r2, ..., R1, R2...). Therefore for a system of N particles, the
wave-functions will be functions of 3N variables.

The only hope to solve the Schrödinger equation (2.45) is first to simplify its tremendous complexity for
a multi dimensional wave-function. For this, a brief description of a Density Functional Theory (DFT)
will be presented, then by including a time-dependent perturbation potential, we will touch upon the
time-dependent density functional theory (TDDFT).

2.2.1 Density Functional Theory

2.2.1.1 The Thomas-Fermi Model

The idea of the DFT is to avoid the use of the full N -particle wave-function by using the much simpler
electron density n(r). The original idea came from the Thomas-Fermi model [20]. Llewellyn Thomas
and Enrico Fermi realized that statistical considerations can be used to approximate the distribution of
electrons in an atom. The assumptions stated by Thomas are that: “Electrons are distributed uniformly
in the six-dimensional phase space for the motion of an electron at the rate of two for each h3 of volume”,
and that there is an effective potential field that “is itself determined by the nuclear charge and this
distribution of electrons.” From this assumptions, Thomas and Fermi derived that the ground state
electron density must satisfy the variational principle[21],

δ

{
ETF [n]− µTF

(ˆ
n(r)dr−N

)}
= 0, (2.46)

where ETF [n] is the energy of the atom in terms of electron density, N = N [n(r)] =
´
n(r)dr is the total

number of electrons in the atom, and µTF is defined by the Euler-Lagrange equation

µTF = δETF [n]
δn(r) . (2.47)

Unfortunately, the simple approximations ETF [n] for the total-energy density functional fail when it comes
to molecules. This plus the fact that the accuracy for atoms is not high compared to other methods, caused
the method to become viewed as an oversimplified model of not much real importance for quantitative
predictions in atomic, molecular or solid-state physics.

9



CHAPTER 2. THEORY

2.2.1.2 The Hohenberg-Kohn Theorems

Hohenberg and Kohn showed that for ground states the Thomas-Fermi model may be regarded as an ap-
proximation to an exact theory, the Density Functional Theory [22]. There is an exact energy functional
E[n], as well as an exact variational principle of the form of equation (2.46).

The basic lemma of Hohenberg-Kohn (HK) theorem is that the ground state density n(r) of a bound
system of interacting electrons in some external potential V (r) determines this potential uniquely. The
original proof can be found in [22].

The most important property of an electronic ground state is its energy E. By wave-function methods
E could be calculated either by direct approximate solution of the Schrödinger equation Hψ = Eψ or
from the Rayleigh-Ritz minimal principle

E = minψ̃

〈
ψ̃
∣∣∣H ∣∣∣ψ̃〉 , (2.48)

where ψ̃ is a normalized trial function for the given number electrons N , and H is the total Hamiltonian
of the system

H = T + U + V . (2.49)

T is the kinetic energy, U the interaction energy and V is an external potential. The formulation of the
minimal principle in terms of trial densities ñ(r), rather than trial wave-function ψ̃ was first presented
in [22]. Here, the derivation due to Levy and Lieb [23], called the constrained search method, will be
succinctly presented.

Every trial function ψ̃ corresponds to a trial density n(r) obtained by

ñ(r) = N

ˆ
ψ̃∗(r1, r2, ..., rn)ψ̃(r1, r2, ..., rn)dr2...drn (2.50)

One may carry out the minimization of equation (2.48) in two stages. (i) In the first step, one fixes a trial
ñ(r) and denote by ψ̃αñ the class of trial functions which deliver this ñ. The constrained energy minimum
with ñ(r) fixed is defined as

EV [ñ(r)] = minα
〈
ψ̃αñ

∣∣∣H ∣∣∣ψ̃αñ〉 =
ˆ
V (r)ñ(r)dr + F [ñ(r)], (2.51)

where,

F [ñ(r)] = minα
〈
ψ̃αñ

∣∣∣T + U
∣∣∣ψ̃αñ〉 . (2.52)

The functional F [ñ(r)] requires no explicit knowledge of external potential V (r). It is an universal func-
tional of the density ñ(r).

(ii) In the second step, one minimizes the equation (2.51) over all ñ

E = minñEV [ñ(r)] (2.53)

= minñ
{ˆ

V (r)ñ(r)dr + F [ñ(r)]
}

. (2.54)
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For a non-degenerate ground-state, the minimum is attained when ñ(r) is the ground-state density. The
HK minimum principle (equation (2.53)) may be considered as the formal justification of the Thomas-
Fermi theory (equation (2.46)).

2.2.1.3 Hartree Equations

There are number of approximations in the electronic structure theory which may be considered as
precursors of modern KS equations.
Below we recall one of the self consistent schemes- - -Hartree equations. Hartree proposed a set of self-
consistent single-particle equations for the approximate description of the electronic structure of atoms.
Every electron is regarded as moving in an effective single-particle potential

VH(r) = −Z
r

+
ˆ

n(r′)
|r− r′|dr′, (2.55)

where the first term represents the potential due to a nuclei of atomic number Z and the second term
is the potential due to the average electronic density distribution n(r). Thus, each electron obeys a
single-particle Schrödinger equation

{
−1

2∇
2 + VH(r)

}
ϕj(r) = εjϕj(r), (2.56)

where j denotes both spatial as well as spin quantum numbers. The mean density is given by

n(r) = 2
N∑
j=1
|ϕj(r)|2, (2.57)

where, in the ground state, the sum runs over the N lowest eigenvalues to respect the Pauli exclusion
principle. Equations (2.55)–(2.57) are called the self-consistent Hartree equations. One may start from
a first approximation for the density n(r) (e.g. from TF theory), construct VH(r) according to equation
(2.55), solve equation (2.56) for ϕj ; and recalculate n(r) from equation (2.57), which should be the same
as the initial n(r). If it is not one iterates appropriately until the self-consistency is achieved.

The Hartree differential equation (2.56) had the form of the Schrödinger equation for non-interacting
electrons moving in the external potential Veff. For such a system, the HK variational principle takes the
form

EV (r)[ñ] =
ˆ
V (r)ñ(r)dr + TS [ñ(r)] ≥ E, (2.58)

where TS [ñ(r)] is the kinetic energy of the ground state of non-interacting electrons with density distri-
bution ñ(r). Euler-Lagrange equations, embodying the fact that the expression (2.57) is stationary with
respect to variation of ñ(r) (which leaves the total number of electrons unchanged) read

δEV [ñ(r)] =
ˆ
δñ(r)

(
V (r) + δ

δñ(r)TS [ñ(r)]|ñ=n − ε
)
dr = 0, (2.59)

with ñ(r) being the exact ground-state density for V (r). Here ε is a Lagrange multiplier to assure particle
conservation. Now in this soluble, non-interacting case we know that the ground-state energy and density
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can be obtained by calculating the eigenfunction ϕj(r) and eigenvalues εj of non-interacting, single particle
equations

(
−1

2∇
2 + V (r)− εj

)
ϕj(r) = 0, (2.60)

yielding

E =
N∑
j=1

εj ; n(r) =
N∑
j=1
|ϕj(r)|2. (2.61)

2.2.1.4 Reasoning Behind the KS Equations

Returning now to the problem of interacting electrons, which had previously been addressed approximately
by the single-particle-like Hartree equations, Kohn and Sham wrote the functional F [ñ(r)] of equation
(2.52) in the form

F [ñ(r)] = TS [ñ(r)] + 1
2

ˆ
ñ(r)ñ(r′)
|r− r′| drdr′ + Exc[ñ(r)], (2.62)

where TS [ñ(r)] is the kinetic energy functional for non-interacting electrons. The last term Exc[ñ(r)]
defines the exchange-correlation energy functional equation (2.62). The HK variational principle for
interacting electrons now takes the form

EV [ñ(r)] =
ˆ
V (r)ñ(r)dr + TS [ñ(r)] + 1

2

ˆ
ñ(r)ñ(r′)
|r− r′| drdr′ + Exc[ñ(r)] ≥ E, (2.63)

and the corresponding Euler-Lagrange equations, for a given total number of electrons has the form

δEV [ñ(r)] =
ˆ
δñ(r)

(
Veff(r) + δ

δñ(r)TS [ñ(r)]|ñ(r)=n(r) − ε
)
dr = 0. (2.64)

Here

Veff(r) = V (r) +
ˆ

n(r′)
|r− r′|dr′ + Vxc(r), (2.65)

and the local exchange-correlation potential V xc is formally given by a functional derivative of exchange-
correlation energy Exc

Vxc = δ

δñ(r)Exc[ñ(r)]|ñ(r)=n(r). (2.66)

The form of equation (2.64) is identical to equation (2.59) for non-interacting particles moving in an
effective external potential Veff instead of V (r), and so we can conclude that the minimizing density n(r)
is given by solving the single particle equation

(
−1

2∇
2 + Veff(r)− εj

)
ϕj(r) = 0, (2.67)
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with

n(r) = 2
N∑
j=1
|ϕj(r)|2, (2.68)

Veff(r) = V (r) +
ˆ

n(r′)
|r− r′|dr′ + Vxc(r). (2.69)

The exchange-correlation potential Vxc(r) depends functionally on the entire density distribution ñ(r).
These self-consistent equations are called the Kohn-Sham (KS) equations. The ground-state energy is
given by [14]

E =
∑
j

εj + Exc[n(r)]−
ˆ
Vxc(r)n(r)dr− 1

2

ˆ
n(r)n(r′)
|r− r′| dr′. (2.70)

If one neglects Exc and Vxc, the KS equation (2.67) and (2.70) reduce to the self-consistent Hartree equa-
tions.

The KS theory may be regarded as an extension of Hartree theory. With the exact Exc and Vxc, all
many-body effects are in principle included. Clearly, this directs attention to the functional Exc[ñ(r)]. The
practical usefulness of ground-state DFT depends entirely on whether approximations for the functional
Exc[ñ(r)] could be found which are at the same time sufficiently simple and sufficiently accurate. There
are many approximations for Exc[ñ(r)] available in the literature

Local density approximation (LDA) [24],

Generalized gradient approximations [25],

Optimized effective potential [26],

Orbital dependent correlation functional [27].

In this work LDA functional will be used.

2.2.2 Time Dependent Density Functional Theory

One of the principal limitations of DFT is that it gives only access to the ground state as mentioned in
the previous section. DFT is a time-independent theory, not generally applicable to problems involving
time-dependent fields which we consider in this work.
The generalization of the basic formalism of DFT to the time dependent case has been given by Runge,
Gross and Kohn [28].

Suppose having an N -electrons system, described by the Schrödinger equation

H(t) |ϕ〉 = i ∂
∂t
|ϕ〉 , (2.71)

with H(t) = T +V0 +V ′(t) = −1
2
∑
i∇2

i +
∑
i<j

1
|ri−rj | +

∑
i Vext(ri, t) sum of the kinetic energy, Coulomb

potential and external (time-dependent) potential. Runge and Gross showed that the densities n(r, t) and
n′(r, t) evolving from the common initial state ϕ(t0) = ϕ0 under the influence of two external potential
Vext(r, t) and V ′(r, t), both Taylor expandable around t0, are always different providing that the external
potentials differ by more than a purely time-dependent function c(t). This is the time-dependent analogue
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of the HK theorem described in section 2.2.1.2. As a consequence, the time-dependent density uniquely
determines the external potential (up to a purely time-dependent function c(t)). On the other hand, the
potential determines the time-dependent wave-function, unique functional of the density up to a purely
time-dependent phase

ϕ(t) = e−iα(t)ϕ[n,ϕ0](t). (2.72)

So for an operator Ô(t), which is a function of time, but not of any derivative or integral operators on
t, this phase factor cancels out when taking the expectation value, which is hence a unique functional of
the density

〈
ϕ(t)

∣∣∣ Ô(t)
∣∣∣ϕ(t)

〉
= O[n](t). (2.73)

The analogue of the second HK theorem, where the Rayleigh-Ritz minimum principle is used for the
total energy, is given by the time dependent theory by the stationary principle of the Hamiltonian action
integral, as no minimum energy principle is available. In fact, in quantum mechanics the time-dependent
Schrödinger equation, with the initial condition ϕ(t0) = ϕ0 corresponds to a stationary (not necessarily
minimum) point of the quantum mechanical action integral

E =
ˆ t1

t0

dt

〈
ϕ(t)

∣∣∣∣ i ∂∂t −H(t)
∣∣∣∣ϕ(t)

〉
, (2.74)

where E is a functional of the density and has a stationary point at the correct time-dependent density.
This density can hence be obtained by solving the Euler equation

δE

δn(r, t) = 0. (2.75)

with appropriate initial conditions. Now, exactly like for the time-independent case, the functional E
reads

E[n] = F [n]−
ˆ t1

t0

dt

ˆ
drn(r, t)Vext(r, t). (2.76)

Here the universal functional F [n] is given by

F [n] =
ˆ t1

t0

dt

〈
ϕ(t)

∣∣∣∣ i ∂∂t − T − VHxc
∣∣∣∣ϕ(t)

〉
. (2.77)

As for the time-independent DFT one can define a Kohn-Sham scheme by introducing a non-interacting
system with exactly the same density n(r, t). Once the v-representability of the time-dependent density
is proven [29], we can apply the stationary condition to equation (2.76) under the condition

n(r, t) = 2
∑
i

|ϕi(r, t)|2, (2.78)

in order to obtain the time-dependent Kohn-Sham equations
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[
−1

2∇
2 + Veff(r, t)

]
ϕi(r, t) = i ∂

∂t
ϕi(r, t). (2.79)

Here effective time-dependent potential

Veff(r, t) = Vext(r, t) +
ˆ

n(r′, t)
|r− r′|dr′ + Vxc(r, t) (2.80)

is analogous to equation (2.69).

2.3 Electric Field Enhancement in a Cavity

The aim of this work is to study the electric field distribution and enhancement between two metallic
clusters. Now, the derivation of this enhancement will be presented from the perspective of linear response
TDDFT.

2.3.1 Response Function Formulation

First of all, the density change needs to be derived in order to find the field enhancement. This derivation
will be done for one electron, and will be generalized to several electrons.
The time-dependent SE reads

(
i ∂
∂t
−H0 − δVext

)
ψ(r, t) = 0, (2.81)

where H0 is the time-independent Hamiltonian without external perturbation and δVext is the time-
dependent perturbation. Provided δVext(r, t) is small we adopt perturbation theory ansatz for ψ(r, t)

ψ(r, t) = ψ0(r, t) + δψ(r, t), (2.82)

where ψ0(r, t) fulfill the time-independent Schrödinger equation

(
i ∂
∂t
−H0

)
ψ0(r, t) = 0, (2.83)

=⇒
(
i ∂
∂t
−H0 − δVext

)
ψ0(r, t) +

(
i ∂
∂t
−H0 − δVext

)
δψ(r, t) = 0. (2.84)

By using (2.83) and by neglecting second order terms, one get

−δVextψ0(r, t) +
(
i ∂
∂t
−H0

)
δψ(r, t) = 0, (2.85)

⇐⇒
(
i ∂
∂t
−H0

)
δψ(r, t) = δVextψ0(r, t), (2.86)

Green’s functions can be used to solve equation (2.86)
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(
i ∂
∂t
−H0

)
G(rt, r′t′) = δ(r− r′)δ(t− t′), (2.87)

⇐⇒
ˆ (

i ∂
∂t
−H0

)
G(rt, r′t′)δVext(r′, t′)ψ0(r′, t′)dr′dt′ =

ˆ
δ(r− r′)δ(t− t′)δVext(r′, t′)ψ0(r′, t′)dr′dt′,

(2.88)

⇐⇒
(
i ∂
∂t
−H0

) ˆ
G(rt, r′t′)δVext(r′, t′)ψ0(r′, t′)dr′dt′ = δVext(r, t)ψ0(r, t). (2.89)

But from (2.86) one gets

⇐⇒
(
i ∂
∂t
−H0

) ˆ
G(rt, r′t′)δVext(r′, t′)ψ0(r′, t′)dr′dt′ =

(
i ∂
∂t
−H0

)
δψ(r, t), (2.90)

=⇒ δψ(r, t) =
ˆ
G(rt, r′t′)δVext(r′, t′)ψ0(r′, t′)dr′dt′. (2.91)

For one electron, the density is

n(r, t) = ψ∗0(r, t)ψ0(r, t), (2.92)
=⇒ n(r, t) + δn(r, t) = (ψ∗0 + δψ∗) (ψ0 + δψ) , (2.93)

⇐⇒ δn(r, t) = ψ∗0δψ + δψ∗ψ0, (2.94)
= 2R(ψ∗0δψ), (2.95)

⇐⇒ δn(r, t) = ψ∗0(r, t)
ˆ
G(rt, r′t′)δVext(r′, t′)ψ0(r′, t′)dr′dt′ + cc, (2.96)

with cc meaning the complex conjugate. But the linear density change to a perturbation δVext(r′, t′) is
given by [30]

δn(r, t) =
ˆ
χ(rt, r′t′)δVext(r′, t′)dr′dt′, (2.97)

where χ(rt, r′t′) is the so called interacting response function. In frequency space, one gets the following
relations


δn(r,ω) =

ˆ
χ(r, r′,ω)δVext(r′,ω)dr′,

δn(r,ω) =
ˆ
χ0(r, r′,ω)δVeff(r′,ω)dr′.

(2.98)

Here χ0(r, r′,ω) is the so called density response function and δVeff = δVext + δVHxc with δVHxc the
perturbation of effective interaction potential VHxc. Comparing ansatz (2.97) with equation (2.96), we
can obtain an expression for non-interaction density response

χ0(rt, r′t′) = ψ∗0(r, t)G(rt, r′t′)ψ0(r′, t′). (2.99)

Thus, to find χ0, it is necessary to find G. The Green function obeys equation (2.87), whose the solution
is given by [31]
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G(rt, r′t′) = −i
∑
n

φn(r)φ∗n(r′)e−i(En±iε)(t−t′)θ±(t− t′), (2.100)

Where

θ+(x) =
{

0 if x > 0,
−1 if x < 0,

and θ−(x) =
{

1 if x > 0,
0 if x < 0.

(2.101)

By doing Fourier transform of (2.99) we get

χ(r, r′,ω) =
∑
m>0

ψ∗0(r)ψm(r)ψ∗m(r′)ψ0(r′)
ω − (E0 − Em) + iε − ψ∗m(r)ψ0(r)ψ∗0(r′)ψm(r′)

ω − (Em − E0) + iε . (2.102)

For several electrons, one finds

χ(r, r′,ω) =
∑
n,m

(fn − fm)ψ
∗
n(r)ψm(r)ψ∗m(r′)ψn(r′)
ω − (En − Em) + iε , (2.103)

with (n,m) indices over the states. fn and fm are the occupation terms. If n and m are occupied or
unoccupied states, fn − fm = 0, otherwise fn − fm 6= 0. Equations (2.98) can be written as variational
derivatives of δn(r,ω)


χ0(r, r′,ω) = δn(r,ω)

δVeff(r′,ω) ,

χ(r, r′,ω) = δn(r,ω)
δVext(r′,ω)

.
(2.104)

Thus,

χ−1
0 (r, r′,ω) = δVeff(r,ω)

δn(r′,ω) and χ−1(r, r′,ω) = δVext(r,ω)
δn(r′,ω) , (2.105)

rewriting equation (2.80) as Veff = Vext + VHxc and taking the variational derivative of δn(r,ω)

δVeff(r,ω)
δn(r,ω) = δVext(r,ω)

δn(r,ω) + δVHxc(r,ω)
δn(r,ω) . (2.106)

Comparing equation (2.106) with equation (2.105), one gets

χ−1
0 (r, r′,ω) = δVHxc(r,ω)

δn(r,ω) + χ−1(r, r′,ω), (2.107)

χ−1
0 (r, r′,ω) = K(r, r′,ω) + χ−1(r, r′,ω), (2.108)

=⇒ χ(r, r′,ω) =
[
χ−1

0 (r, r′,ω)−K(r, r′,ω)
]−1

. (2.109)

Here K = δVHxc(r,ω)
δn(r,ω) is the TDDFT kernel.
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Furthermore,

(
χ−1

0 (r, r′,ω)−K(r, r′,ω)
)−1

=
[
χ−1

0 (r, r′,ω)
(
1− χ0(r, r′,ω)K(r, r′,ω)

)]−1
, (2.110)

⇐⇒ χ(r, r′,ω) = χ0(r, r′,ω)
[
1− χ0(r, r′,ω)K(r, r′,ω)

]−1 . (2.111)

Inserting equation (2.109) into equation (2.111)

1 = χ−1
0 (r, r′,ω)χ(r, r′,ω)−K(r, r′,ω)χ(r, r′,ω), (2.112)

χ0(r, r′,ω) = χ(r, r′,ω)− χ0(r, r′,ω)K(r, r′,ω)χ(r, r′,ω), (2.113)
=⇒ χ(r, r′,ω) = χ0(r, r′,ω) + χ0(r, r′,ω)K(r, r′,ω)χ(r, r′,ω). (2.114)

2.3.2 Polarizability in Linear Response TDDFT

Using the dipole approximation, the external potential becomes connected to the electric field by δVext =
rEext and the polarizability tensor emerges

Pij(ω) =
ˆ

riχ(r, r′,ω)rjdrdr′ (2.115)

The trace of the polarizability is proportional to the optical cross section as shown in equation (2.44).
Since, we want to look into the spatial characteristics of the optical absorption, we will also analyze the
induced density (2.98) due to the external field Eext(ω). The density change depends on the direction of
the external electrical field (polarization) and on its frequency

δn(r,ω, Eext) = −
ˆ
χ(r, r′,ω)

(
r′.Eext

)
dr′ (2.116)

The induced density provides spatial maps that characterize the spatial and frequency dependence of net
density change.

Introducing a basis of dominant products into equation (2.114) (see appendix A)

χµν(ω) = χ0
µν(ω) +

∑
µ′ν′

χ0
µµ′(ω)Kµ′ν′

Hxcχν′ν(ω) (2.117)

we obtain an equation for expansion coefficients χµν(ω) of interacting response function, where Kµν
Hxc are

the matrix elements of the Hartree-exchange-correlation kernel KHxc(r, r′) between dominant products
Fµ(r). Solving equation (2.105) against χµν(ω), one could determine the interacting response function
χ(r, r′,ω). Setting the external potential to δVext = rEext, and inserting equation (2.114) into equation
(2.98) with the basis of dominant products given in equation (A.6), and by defining the dipole moment
as

dµ(r) =
ˆ
Fµ(r′)r′d3r′, (2.118)

then equation (2.116) is written as

δn(r,ω) = Fµ(r) (δnµ(r,ω).Eext) (2.119)
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where the vector δnµ(ω) =
[
(1− χ0K)−1 χ0

]
µν

dµ. Which can be rewritten in the form of a matrix
equation

[1− χ0(ω)K(ω)] δnµ(ω) = χ0(ω)dν . (2.120)

Calculation of both the polarizability tensor (2.115) as well as the density change (2.116) is done at a
much lower computational cost using an iterative approach [32]. The calculation is straightforward in this
approach, because expansion coefficients of density change are determined in the basis of dominant prod-
ucts δnµ(ω, E) during calculation of the polarizability tensor (equation 2.115). The real-space quantity
δn(r,ω, E) is then recovered on a 3D grid of points. From this real-space representation of the density
change, the electric field distribution is determined as explained in the next section.

2.3.3 Enhancement for a Monochromatic Field

Let’s now derive the time average of the power density of induced electrical field

P (ω0) = 1
T

ˆ T

0
δEind(t)δE∗inddt, (2.121)

where ω0 is the frequency of the incident monochromatic field, δEind(t) is the electrical field generated by
the induced density δn(r, t).

Lets assume a monochromatic field, homogeneous with a simple cosine dependence on time

E(t) = E0 cos(ω0t) = E0
2
(
eiω0t + e−iω0t

)
. (2.122)

In the frequency domain, the cosine field reads

E(ω) = E0
2 (δ(ω − ω0) + δ(ω + ω0)) . (2.123)

The scalar potential of the homogeneous field is given by the scalar product δVext(r,ω) = −rEext(ω).
Therefore, from equation (2.97), one can find the form of the induced density for a monochromatic field

δn(r, t) =
ˆ
dr′
ˆ +∞

−∞
χ(r, r′,ω)δVext(r′,ω)eiωtdω, (2.124)

⇐⇒ δn(r, t) =
ˆ
dr′
ˆ +∞

−∞
χ(r, r′,ω)r′E0

2 (δ(ω − ω0) + δ(ω + ω0)) eiωtdω, (2.125)

⇐⇒ δn(r, t) =
ˆ (

χ(r, r′,ω0)eiω0t + χ(r, r′,−ω0)e−iω0t
) r′E0

2 dr′. (2.126)

For the sake of brevity, lets expel spatial variables from equations below

=⇒ δn(t) =
(
χ(ω0)eiω0t + χ(−ω0)e−iω0t

) E0
2 . (2.127)

The temporal dependence of the induced electrical field is going to be

δEind(t) =
(
χ(ω0)eiω0t + χ(−ω0)e−iω0t

) E0
2 . (2.128)
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Let’s separate χ(ω0) in real and imaginary part χ(ω0) = χ′(ω0) + iχ′′(ω0)

=⇒ δEind(t) =
[(
χ′(ω0) + iχ′′(ω0)

)
eiω0t +

(
χ′(−ω0) + iχ′′(−ω0)

)
e−iω0t

] E0
2 . (2.129)

The real part of the density response is even in frequency, while the imaginary part is odd, thus

=⇒ δEind(t) =
[(
χ′(ω0) + iχ′′(ω0)

)
eiω0t +

(
χ′(ω0)− iχ′′(ω0)

)
e−iω0t

] E0
2 , (2.130)

⇐⇒ δEind(t) =
(
χ′(ω0) cos(ω0t) + iχ′′(ω0) sin(ω0t)

)
E0. (2.131)

Now it is easier to compute the average power density given in equation (2.121)

P (ω0) = 1
T

ˆ T

0

(
χ′(ω0) cos(ω0t) + iχ′′(ω0) sin(ω0t)

)
(
χ′(ω0) cos(ω0t)− iχ′′(ω0) sin(ω0t)

)
E2

0dt,
(2.132)

⇐⇒ P (ω0) = 1
T

ˆ T

0

(
χ′2(ω0) cos2(ω0t) + χ′′2(ω0) sin2(ω0t)

)
E2

0dt, (2.133)

⇐⇒ P (ω0) =
(
χ′2(ω0) + χ′′2(ω0)

) E2
0

2 . (2.134)

The enhancement is given by a ratio R of intensities of the induced and external field, i.e.

R(ω0) = χ′2(ω0) + χ′′2(ω0). (2.135)

The ratio R(ω) is the quantity that we characterize in this work.

2.3.4 Spatial Distribution of the Induced Electric Field

The spatial distribution of the induced electric field in response to a monochromatic external field is given
by

Eind(r) = −
ˆ (r− r′)
|r− r′|3 δn(r′)d3r′, (2.136)

where δn(r) is the induced density change at a given frequency. For plotting purposes we will compute
Eind(r) on a 3D equidistant grid. Direct evaluation of the integral (2.136) takes NE .Nn operations where
NE is number of points at which we evaluate electric field and Nn is the number of points used to
represent the density change with a sufficient accuracy. Because the number of points NE and Nn can be
rather large, the direct evaluation of Coulomb field is impractical. Instead, we will apply the convolution
theorem to the Coulomb field (2.136) and use Fast Fourier Transform (FFT) to compute involved Fourier
transform (FT) provide by the FFTW libraries. As it can be easily seen, the Coulomb field (2.136) is a
convolution of the two functions

Eind(r) = − r
|r|3

⊗
δn(r). (2.137)
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The convolution theorem reads

FT [Eind(r)] = −FT
[ r
|r|3

]
.FT [δn(r)] . (2.138)

i.e. FT of a convolution is given by the product of FTs of the function. The last equation can be rewritten
by using the inverse Fourier Transform FT−1

Eind(r) = −FT−1
(
FT

[ r
|r|3

]
.FT [δn(r)]

)
. (2.139)

Evaluation of FT with FFT methods takes only N operations where N is the number of points at which
one has input function.

In order to avoid Coulomb singularity, we evaluate electric field at the points which are shifted relative
to the points on which density change is given. In order to get a balanced contribution of density at the
nearest neighbor points, we shift the grids by half of the grid space in each direction. The sketch of such
setting of grids in the 2D case is shown in the figure 2.3.1

Figure 2.3.1: 2D representation of the spatial grid of the density(blue dots) and the electric field(red dots). The red dots are
shifted of ∆r compared to the blue dots in order to eliminate the singularity present in |r−r′|

|r−r′|3 in equation 2.136 and get a balanced
contribution from the neighboring points.

2.4 Simple Dipole Model
To get a good understanding of the calculations presented in the next chapter, we study in this section a
simple model composed of 2 molecules that can be seen as two interacting dipoles separated by a distance
d in a homogeneous, isotropic and linear media. For one dipole, the polarization µ is written

µ = PEtot, (2.140)

where Etot = Eext+Eind is the total electric field, Eind is the induced electric field and Eext is the external
perturbation. And P is the polarizability tensor
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P =

Pxx Pxy Pxz
Pyx Pyy Pyz
Pzx Pzy Pzz

 . (2.141)

In an homogeneous, isotropic and linear media the Drude-Lorentz model give [16]

Pij =


P0

ω2 − ω2
0 + iγ

if i = j,

0bbbbbb otherwise,
(2.142)

where ω0 is the resonance frequency and γ is the damping. In our small model ω0 = 2.0eV and γ = 0.1eV.
In the case of two dipoles, the polarization of the first dipole is

µ1 = P (Eext +Aµ2) . (2.143)

Here A is the dipole interaction matrix

Aij = 3RiRj
R5 − δij

R3 , (2.144)

with R the vector between the two dipoles. But similar to equation (2.143)

µ2 = P (Eext +Aµ1) . (2.145)

Inserting equation (2.145) into equation (2.143)

µ1 = P (Eext +A.P (Eext +A.Pµ1)) (2.146)
⇐⇒ (I − PAPA) µ1 = (P + PAP ) Eext (2.147)

⇐⇒ µ1 = (I − PAPA)−1 (P + PAP ) Eext (2.148)

where I is the identity matrix. The total polarizability of the system is therefore

Ptot = (I − PAPA)−1 (P + PAP ) (2.149)

Then for this basic model, the electric field enhancement in the center of the system is given by

Eind = 8. (Aµ1 +Aµ2) (2.150)

where µ1 and µ2 are respectively given by equation (2.148) and (2.145).
The polarizability and electric field enhancement provided by this simple model are shown in figure 2.4.1
with an external field along the y−axis and the two objects separated by a distance d along the y− axis.
One can notice that two modes are present, one mode is shifting to higher energies when the distance
decrease. This mode is therefore a non-stable solution caused by the Pxx and Pzz matrix elements (figure
2.4.1b and 2.4.1d). The second mode is caused by the Pyy matrix element as shown in figure 2.4.1c. This
mode is going to lower energies when the distance decrease and correspond to a stable solution.
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(a) (b) (c)

(d) (e)

Figure 2.4.1: (a) average, (b) matrix element xx , (c) matrix element yy , (d) matrix element zz of the imaginary part of the
polarizability and (d) electric field enhancement in the center of the dipoles, for two interacting dipoles and an external field oriented
in the z direction, when the distance between the dipole increase.
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Chapter 3

Results: Na cluster dimers

In this section, we analyze the optical response of four sodium cluster dimers (Na2, Na8, Na20 and Na150).
The calculations are done using a new implementation of TDDFT in linear regime developed in the frame-
work of the Orgavolt project [33]. During this master thesis, an extension of this code was developed in
order to calculate the spatial distribution of the induced electric field. This code is interfaced with SIESTA
[34] an efficient density functional theory implementation. In all the calculations, a double zeta polarized
(DZP) basis set has been used with standard pseudo-potentials of Troullier-Martins type [35]. The used
exchange-correlation functional is the local density approximation (LDA) Ceperley-Alder functional[36].
In the following, the calculations performed with this TDDFT code are presented. The calculations con-
sist on the determination of the polarizability and the field enhancement for cavities formed by two Na
clusters of different sizes.

For the four dimers, only the 3s conduction electrons are explicitly included in the calculation by
using standard pseudo-potentials of Troullier-Martins type described in the Appendix B. While in our
calculations the variation of all matrix elements of the polarizability with distance is considered, for the
calculation of the induced density and induced field distribution we focus on the case where the external
field is directed along the y−axis, i.e. the vector that separates the two clusters in the dimer. For the
Na2 dimers, the default broadening constant was chosen (ε = 0.0083eV), while for the three larger dimers
the calculations are presented with a broadening constant ε = 0.1 eV. The program calculates the value
of the electrical field in each point of the space, and the spatial resolution considered for the following
calculation is dx = dy = dz = 0.3 Bohr, which is a suitable value as shown in Appendix C.
First of all, calculations for Na2 dimer with relaxed geometries were performed in order to check the
consistency of our calculations with the simple model presented in section 2.4. Then, the optical properties
of three sodium dimers of different sizes were analyzed. For the Na8 and Na20 clusters, the polarizability
and field enhancement were analyzed with relaxed and non-relaxed geometries, taking the geometries from
[37] for the Na2 and Na8 dimers and from [38] for the Na20 and Na150 dimers. Since these calculations
provide similar results for both geometries (Figure 3.2.4), only the results for the non-relaxed molecules
are presented in section 3.2 and 3.3. For the Na150 analyzed in section 3.4, the position of the atoms were
relaxed for the one cluster case, then the relaxed geometry was used to build the cavity.
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3.1 Na2 Cluster
In order to check the consistency of our program with the simple model presented in section 2.4, we
analyze the optical properties of a Na2 dimer that can be assimilate to two interacting dipoles as in our
simple model. We study three different geometries, in the first one the molecules are aligned along x−axis,
in the second one along y−axis and in the last geometry the molecules are aligned along z−axis, as shown
in the plane z = 0 in Figure 3.1.1.

(a)
(b)

(c)

Figure 3.1.1: Geometries of the Na2 dimers in the plane z = 0, when the molecular axis is (a) along the x−axis, (b) along the
y−axis, and (c) along the z−axis (for this geometry, the projection of the atoms in the plane z = 0 give only two points). The
distance d between the molecules is changed from 3 to 12 Å. The distance between the atoms in a molecule is 2.97 Å.

The Na2 is a good check for our program because of its simple geometry. The density distribution
is very similar to that of a dipole (Figure 3.1.2) as in our simple model presented in section 2.4. The
broadening constant of the following calculation was set to its default value ε = ∆ω

Nω
= 0.0083 eV where

∆ω = 5.0 eV is the frequency window, and Nω = 600 is the number of frequency. The default value
was chosen in order to have a better visualization of the frequency shift. Figures 3.1.3, 3.1.4, 3.1.5 and
3.1.6 show the evolution of the polarizability as function of the distance d between the molecules in our
frequency window ∆ω, and should be compared with Figure 2.4.1a, 2.4.1b, 2.4.1c and 2.4.1d; respectively.
For large separation between the Na2 molecules we observed two modes in the average polarizability. The
high energy mode corresponds to the polarization of the molecule perpendicular to the molecular axis,
whereas the low energy mode corresponds to the polarization along the molecular axis. From a qualitative
point of view, the results in Figures 3.1.3, 3.1.4, 3.1.5 and 3.1.6 are similar to those obtained with our
simple model. When the external field is perpendicular to the vector joining the molecular centers (along
the y−axis here as in Figures 3.1.4 and 3.1.6), the excited modes tend to shift to higher frequencies as the
distance decreases. When the external field is directed along the y−axis (see Figure 3.1.5) we observe a
more complex behavior. However, similar to the simple model, the frequencies of the excited modes tend
to decrease with the intermolecular distance.
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3.1 Na2 Cluster

(a) (b)

Figure 3.1.2: Electronic density distribution when the molecules are oriented along the z−axis and separated by a distance of
10.0Å at the energy of 3.43 eV, (a) real part, (b) imaginary part,

(a) (b) (c)

Figure 3.1.3: Average of the imaginary part of the polarizability, when the axes of the molecules are (a) along the x−axis, (b)
along the y−axis, and (c) along the z−axis.

As expected from the symmetry of the system, the average polarizability and the electric field en-
hancement are exactly the same when the molecules are oriented along the x−axis and along the z−axis,
as shown in Figure 3.1.3 and 3.1.7. Figure 3.1.4 and 3.1.6 show that the matrix elements Pxx and Pzz are
inverted as expected.
For the three geometries the Pxx and Pzz matrix elements are continuous, while the Pyy matrix element
shows some discontinuities (one discontinuity when the molecules are separated by 5.5 Å for the second
geometry (Figure 3.1.5b) and two discontinuities when the molecules are separated by 4.5Å and by 7.0Å
for the first and third geometries (Figure 3.1.5a and 3.1.5c)).

This small test give us a some confidence in the calculations of our program since the results can be
understood with a simple dipole model. The differences can be justified by the limitations of the model,
in particular electron tunneling between molecules and pure chemistry (formation of bonds) are not taken
into account by the dipole model but are present in the case of the Na2 molecule.
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(a) (b) (c)

Figure 3.1.4: Matrix element xx of the imaginary part of the polarizability, when the axes of the molecules are (a) along the
x−axis, (b) along the y−axis, and (c) along the z−axis.

(a) (b) (c)

Figure 3.1.5: Matrix element yy of the imaginary part of the polarizability, when the molecular axes are (a) along the x−axis, (b)
along the y−axis, and (c) along the z−axis.

(a) (b) (c)

Figure 3.1.6: Matrix element zz of the imaginary part of the polarizability, when the molecular axes are (a) along the x−axis, (b)
along the y−axis, and (c) along the z−axis.

(a) (b) (c)

Figure 3.1.7: Electric field enhancement in the center of the cavity, when the external electric field is oriented in the y−direction
and the molecular axes are (a) along the x−axis, (b) along the y−axis, and (c) along the z−axis.
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3.2 Na8 Cluster
Then ab-initio calculations for the Na8 cluster were performed. The geometry of the clusters was taken
from Ref.[37] and is depicted in Figure 3.2.1.

(a)
(b)

Figure 3.2.1: Geometry of the Na8 cluster, (a) in the plane z = 0, (b) in the plane x = 0. The distances between the atoms are
a = 3.122Å, b = 3.810Å, c = 3.227Å, d = 3.228Å and e = 4.170Å.

Then, from the one cluster geometry, the cavity can be built by putting face to face two clusters
along the y−axis as shown in Figure 3.2.2. The distance d is the distance between the edge atoms of the
clusters.

(a)
(b)

Figure 3.2.2: Geometry of the Na8 cavity, (a) in the plane z = 0, (b) in 3 dimensions. The distance between the 2 clusters is the
variable d .

3.2.1 Polarizability

The first interesting quantity in this work is the imaginary part of the polarizability tensor because it is
connected to the absorption cross-section given by the equation (2.44) and it is determined by the electron
transitions (section 2.1). The one cluster case and the two clusters cases have been studied, with relaxed
and non-relaxed geometries. In Figure 3.2.3, the polarizability of the relaxed geometry (red curves) and
of the non-relaxed geometry (blue-dotted line) are compared for one cluster. The two polarizabilities
have a similar shape, therefore, in the following only the non-relaxed geometry data will be presented.
However, calculations were also done with relaxed geometries, and always present similar shapes than the
non-relaxed ones. The optical properties of the isolated Na8 cluster have been studied by Tsolakidis et
al. [39]. Our results in Figure 3.2.4b are consistent with those of these authors (Figure 3.2.4a).
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Figure 3.2.3: Imaginary part of the linear polarizability for the Na8 cluster vs energy. Red curves are the polarizabilities computed
when the positions of the atoms are relaxed, while dotted blue curves correspond to the calculation without relaxation. The left
top panel is the average polarizability (< P >= 1

3
Tr {Pi j(ω)}), the right top panel is the xx matrix element of the polarizability,

the left down panel is the yy matrix element and the right down panel is the zz matrix element.

(a)
(b)

Figure 3.2.4: Imaginary part of the average linear polarizability of Na8 vs energy (a) from the literature[39], (b) our calculation.

The plots in Figures 3.2.4a and 3.2.4b have a similar shape with a main peak around 3 eV. The calcu-
lations were done with a broadening constant ε = 0.1 eV. The good agreement between our calculations
of the polarizability of one Na8 cluster with previous results give us additional confidence in our new
TDDFT implementation.
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3.2 Na8 Cluster

We will now analyze the polarizability of two Na8 clusters forming a nanocavity. Figure 3.2.5 and
Figure 3.2.6 show the evolution of the imaginary part of the polarizability as a function of the distance
for the frequency range ∆ω = [0; 6] eV. Figure 3.2.5a is a contour plot of the average polarizability and
Figure 3.2.5c is the contour plot of the Pyy matrix element. One can observe that at small distances
(1.0 < d < 5 Å) the average polarizability shows two peaks; one at small frequency (∼ 2.1 eV) with a
higher intensity and another one at higher frequency (∼ 3.8 eV). Around a cavity size of 5 Å, the peak
at low frequency goes to zero while a new one appears at a slightly higher frequency (∼ 2.74 eV). This
shifts are particularly visible in the contour plot 3.2.5c and in Figure 3.2.6c, which shows the details of
the Pyy matrix element for different cavity sizes. Moreover, one can notice that this polarizability change
is correlated with the change in the density distribution shown in Figures 3.2.7 and 3.2.8. The density
distributions for small and large cavity sizes are quite different, and this change happens for a cavity size
of around 5 Å. This shift was also visible in our small model (Figure 2.4.1) presented in section 2.4 and
is therefore characteristic of two interacting dipoles. When the distance between the clusters decreases
one can also notice a blue shift of the high energy peak (from 3.0 eV to 3.8 eV) that is caused by the
Pzz matrix element as shown in Figure 3.2.6d. This blue shift was also present in our small model. As it
is well known the polarizability peak corresponds to a dipole localized surface plasmon or Mie resonance
and, under a quantum treatment, its width is due to Landau fragmentation plus non electronic damping
processes [40, 41]. It can be noticed that the polarizability along the y−axis is stronger compare to the
one along the x−axis and z−axis. This is caused by the geometry of the cluster, shown in Figure 3.2.1,
the cluster shows a larger number of Na-Na bonds along the y−axis than along the two other axis.

(a) (b)

(c) (d)

Figure 3.2.5: Contour plots of (a) the average (b) the xx matrix element, (c) the yy matrix element and, (d) the zz matrix
element, of the polarizability for the two Na8 clusters whose the geometry were kept fixed (unrelaxed) vs the distance d between
the clusters.
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(a)

(b)

Figure 3.2.6
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3.2 Na8 Cluster

(c)

(d)

Figure 3.2.6: Imaginary part of the linear polarizability of two Na8 clusters vs energy for several distances between the clusters.
The blue dotted line represents the polarizability of one cluster multiply by two. (a) Average polarizability, (b) Pxx matrix element,
(c) Pyy matrix element, (d) Pzz matrix element.
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(a) (b) (c) (d)

Figure 3.2.7: Real part of the induced density for different cavity sizes at the energy of the maximum polarizability peak, in the
plane z = 0 (a) cavity of 2.5Å at 2.13 eV, (b) cavity of 5.0Å at 2.3 eV, (c) cavity of 10.0Å at 2.67 eV and (d) cavity of 20.0Å at
2.72 eV.

(a) (b) (c) (d)

Figure 3.2.8: Imaginary part of the induced density for different cavity sizes at the energy of the maximum polarizability peak, in
the plane z = 0 (a) cavity of 2.5Å at 2.13 eV, (b) cavity of 5.0Å at 2.3 eV, (c) cavity of 10.0Å at 2.67 eV and (d) cavity of 20.0Å
at 2.72 eV.

For large distances, the induced density of two Na8 clusters has a similar shape to that of a single
cluster. We can compare these two cases by comparing Figures 3.2.7d and 3.2.9a for the real part, and
Figures 3.2.8d and 3.2.9b for the imaginary part. Therefore, at large distances two distinguishable dipoles,
corresponding to those of the individual clusters, are present. For short distances, the density distribution
changes and cannot be assigned anymore to a superposition of those of two individual clusters (Figures
3.2.7a and 3.2.8a).

3.2.2 Electric Field Enhancement

After checking in the literature that our polarizability has a correct shape compared to previous cal-
culations in the literature, and that the evolution of this polarizability in the dimer case is reasonable
compared to the one cluster case, we compute the electrical field enhancement distribution as defined in
section 2.3.3.
At this point, we are interested in the intensity of the induced electrical field Iind = |Eind|2. In the
next graphics, the ratio between this induced intensity and the intensity of the external electric field
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Iext = |Eext|2 is represented: Ratio = Iind
Iext

. In these calculations the external electric field is always
directed along the y−direction.

First of all, we present the electric field distribution for the one cluster case

(a) (b)

(c)

Figure 3.2.9: (a) Real part of the induced density distribution, (b) imaginary part of the induced density distribution and (c)
electric field enhancement distribution (the green dot represent the point (0, 0, 0)), for one Na8 cluster in the plane z = 0, at the
energy of 2.74 eV (energy at which Pyy and the intensity are maximal as shown in Figure 3.2.3 left down panel and Figure 3.2.4b).

Figure 3.2.9 shows the density and the electric field enhancement distribution for one Na8 cluster.
Figure 3.2.10 shows the electric field enhancement distribution for two Na8 clusters and the comparison
of the field enhancement in Figure 3.2.10d, for one cluster (blue dotted line) and for two clusters (red
curve). The field enhancements shown in Figure 3.2.10c were calculated at 9.5 Å from the cluster edges
(Green dot plotted in Figures 3.2.9c and 3.2.10c).
The plots shown in Figure 3.2.9 were calculated at the energy of 2.74 eV. As shown in Figure 3.2.10c, this

35



CHAPTER 3. RESULTS: NA CLUSTER DIMERS

is the value of the energy at which the field enhancement is maximal for the chosen distance. One can
see in Figure 3.2.4b that the polarizability along−y for one cluster is also maximal at this energy. We
focus now on the field enhancement distribution as shown in Figure 3.2.10. In particular the study of the
evolution of the intensity in the center of the two clusters as function of the cavity size is the objective
of the present master thesis work. For a distance of 5 Å, Figure 3.2.10a shows clearly that the intensity
peak is at the center of the cavity, but at this distance, the intensity of the electrical field is quite low.
When the distance increases, the maximal intensity peak is inside the clusters. Moreover, the intensity
in the center is still high (Figure 3.2.10b), even higher than for shorter distances.

(a) (b) (c)

(d)

Figure 3.2.10: Intensity of the electric field enhancement for different cavity sizes at the energy of the maximum intensity of the
Pyy polarizability matrix element, in the plane z = 0 (a) cavity of 5.0Å at 2.3 eV, (b) cavity of 10.0Å at 2.67 eV, (c) cavity of
20.0Å at 2.72 eV, the green point is the point where we perform the calculation for the red curve shown in Figure 3.2.10d and (d)
comparison of the induced field intensity for one cluster (blue dotted line) and two clusters (red line), the intensity is measured at
a distance of 9.5Å from the cluster edges for the frequency window ∆ω = [0; 7]. The external field is directed along the axis of
the dimer, i.e. the y−axis.

Figure 3.2.10 shows the intensity distribution for three different cavity sizes (5.0Å, 10.0Å and 20.0Å).
Comparing Figures 3.2.10c and 3.2.9c, it is clear that for large distances between the clusters the distri-
bution of the induced field is very similar to that for an isolated cluster. This is shown in Figure 3.2.10d,
where the frequency dependence of the field enhancement for two clusters (red curve) and for one cluster
(dotted blue line) are compared. The electric field is calculated at a distance of 9.5Å from the edge of the
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cluster. The two curves have a similar shape which shows that for large distances, the clusters act like two
isolated clusters, only the value of the enhancement ratio is different, for two clusters. Even for so large
distances, there is still a small enhancement (almost 4). However, for the one cluster the induced field is
smaller than one at such large distances (Figure 3.2.10d blue dotted lines). The average ratio between
the induced field for the two clusters and the one cluster is R = 4.043. The density distribution of two
clusters is also similar to the density distribution of one cluster for large distance as show by comparing
of Figure 3.2.7d and Figure 3.2.9a as well as Figure 3.2.8d compared with Figure 3.2.9b

(a)

(b) (c)

Figure 3.2.11: (a) Intensity of the induced field as a function of the energy calculated in the center of the cavity for several cavity
sizes. (b) Evolution of the energy of the maximal intensity peak (the dotted blue line is the energy of the maximal intensity peak
for one cluster), and (c) evolution of the maximal intensity (the energy for a given distance is shown in figure 3.2.11b), when the
size of the cavity formed by the two Na8 clusters increases. The external field goes along the y−axis, i.e. the axis of the clusters.

Figure 3.2.11a shows the evolution of the intensity at the center of the cavity as function of the cavity
size for a frequency range between 0 and 7 eV. Figure 3.2.11b shows a clear red shift of the intensity
peak when the distance between the two cluster decreases. The energy of this peak converges to the value
for one cluster (blue dotted line at 2.74 eV) for large cavity sizes. And Figure 3.2.11c shows the value
of the induced field at the energy shown in Figure 3.2.11b. At short distances (smaller than 5Å), the
energy of the maximum peak is quite irregular with some low value around 2.2 eV and two larger values
at d = 3Å, ω ∼ 6.0eV and at d = 4.0Å, ω ∼ 2.6eV. From d = 5Å, the energy shift has a regular evolution
until 12Å, where the energy reaches the value for one cluster. The irregular shape at short distances can
be explained from the fact that for this distance range, the electrons of the two clusters start to overlap.
This also explains that the maximum intensity for short distances is quite low as shown in Figure 3.2.11c,
then it is increasing until it reaches its maximal value for d = 9 Å. For larger distances, the maximal
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intensity is decreasing as 1
d3 because the electric field of a dipole decay as the inverse of the cube of the

distance as it is explained in section 2.3.4.

3.3 Na20 Clusters
Similar calculations have been done for the Na20 cluster. The geometry of this cluster can be found in
Ref.[38] and is given in Figure 3.3.1. For the Na20, two different geometries have been analyzed. The
second one corresponds to a rotation of 135◦ around the z−axis compared to the first geometry. In the
two cases, the dimer has a mirror plane passing through the center of the gap. Both geometries differ in
the side of the cluster in closer proximity to the neighboring cluster.

(a)

(b)

Figure 3.3.1: Geometry of the Na20 cluster (a) in the plane z = 0, (b) in 3 dimensions.

(a) (b)

Figure 3.3.2: Geometry of the Na20 cavity in the plane z = 0, (a) Without rotation (first geometry) and (b) with a rotation of
135◦ of each cluster (second geometry). The distance d between the two clusters is taken from the edge atoms.
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3.3.1 Polarizability

For Na20 the average polarizazbility does not shift significantly in energy when the cavity size changes
(Figure 3.3.6a). The main peak is at 2.8 eV, with a second peak at 3.05 eV. For large distances, the two
geometries show similar polarizability (see Figure 3.3.6), but for small distances the first geometry (red
curves) has one dominant peak with a higher polarizability, while the second geometry (dotted blue line)
has two peaks (Figure 3.3.6). The Pxx and Pzz show a weak dependence on the distance (Figure 3.3.6b).
Moreover, the intensity of the polarizability peaks of the first geometry is weaker than that of the one
of the second geometry. For distances larger than 5.0 Å, Pyy is almost constant for distances larger than
7 Å (Figure 3.3.6c). However, the peak position is different for the first geometry (∼ 3.05 eV) and for the
second geometry (∼ 2.8 eV).

(a) (b)

Figure 3.3.3: Contour plots of the imaginary part of the average polarizability (a) and Pyy of the 2 Na20 clusters vs the distance
d between the Na20 clusters for the first geometry.

(a) (b)

Figure 3.3.4: Contour plots of the imaginary part of the average polarizability (a) and Pyy of the 2 Na20 clusters vs the distance
d between the Na20 clusters for the second geometry.

As for the Na8 dimer, the polarizability of the cavity converges to twice the one of a single cluster
when the size of the cavity increases (Figure 3.3.5 shows this convergence but a small difference between
the two polarizabilities is still visible for a cavity size of 20.0 Å). Comparing to the Na8 polarizability
shown in Figure 3.2.5a, the polarizability peaks of the Na20 are less shifted. The Pxx peak of the rotated
geometry moves from 3.05 eV at large distances to 3.20 eV for small cavity sizes (Figure 3.3.6b). For the
Pzz matrix element, the peaks have an energy of 2.9 eV (Figure 3.3.6d) and are almost no shifted. The
Pyy matrix element shows a larger shift (Figures 3.3.3b and 3.3.6b). For large cavity sizes, the peaks have
an energy of 2.75 eV and shift to 2.10 eV for small distances. During this shift, one can notice a range of
distances (from 3.5 to 7.5 Å) where the polarizability is strongly attenuated.
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The first geometry presents similar behavior to those of the second geometry. However, the shape of
the Pxx and Pzz matrix elements are reversed (a consequence of the rotation of the clusters). The main
peak of the Pxx matrix element (Figure 3.3.6b) almost does not shift and has an energy of 3.1 eV. The Pzz
peak is slightly shifted from 2.80 eV at large distances to 2.95 eV for small cavity sizes (Figure 3.3.6d). As
for the rotated geometry, it is the Pyy matrix element which induces the larger shift from 3.1 eV at large
distances to 2.1 eV at small distances (Figures 3.3.3b and 3.3.6c). This large shifts for both geometries
resemble those calculated for the Na8 and the Na2 clusters and are caused by the interaction between the
dipoles generated in each cluster by the external field. The differences with the theoretical simple model
presented in section 2.4 can be caused by the presence of other modes that are not take into account in
this model.

(a) (b)

Figure 3.3.5: Comparison of the imaginary part of the polarizability of two clusters separated by a distance of 20.0 Å (red curves)
with the polarizability for one molecule (dotted blue line) (a) for the non-rotated geometry and (b) for the rotated geometry.

3.3.2 Electric Field Enhancement

The effect of the rotation of the clusters on the induced electric field can be seen in Figure 3.3.7. The
rotated geometry has its maximum intensity peak at 2.65 eV, while the non-rotated geometry has its
maximum intensity peak at a higher energy (∼ 3.05eV) as shown in Figure 3.3.7c. The field enhancement
is also stronger for the second geometry with a value of 172 while the field enhancement is only 150 for
the first geometry. Figures 3.3.8 and 3.3.9 show the electric field enhancement distribution for different
cavity sizes (5.0Å, 10.0Å, 15.0Å, 20.0Å, ). By comparing the field distribution for the two geometries,
the impact of the rotation on the field enhancement is apparent. Therefore, we can conclude that the
intensity and distribution of the induced electric field enhancement is quite sensitive to small structural
change, at least for these rather small clusters.
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(a)

(b)

Figure 3.3.6
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(c)

(d)

Figure 3.3.6: Imaginary part of the linear polarizability of two Na20 clusters vs energy for several distances between the clusters.
The red curves correspond to the first geometry while the blue dotted lines are the polarizability after a rotation of 135◦ around
the z−axis for each of the clusters. (a) Average polarizability, (b) Pxx matrix element, (c) Pyy matrix element, (d) Pzz matrix
element.
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(a) (b)

(c)
(d)

Figure 3.3.7: (a) and (b) contour plots of the electrical field intensity of the two Na20 clusters vs the distance d between the
clusters for the first and second geometry respectively. (c) Evolution of the energy of the maximal intensity peak, and (d) evolution
of the maximal intensity (the energy for a given distance is shown in Figure 3.3.7c), when the size of the cavity formed by the two
Na20 clusters increases. The red dots correspond to the first geometry while the second geometry is represented by the blue dots.

(a) (b) (c) (d)

Figure 3.3.8: Intensity of the induced electric field for different cavity sizes of the first geometry at the energy of the maximal
intensity peak, (a) cavity of 5.0Å at 3.04 eV, (b) cavity of 10.0Å at 2.66 eV, (c) cavity of 15.0Å at 3.0 eV, and (d) cavity of 20.0Å
at 3.1 eV.
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(a) (b) (c) (d)

Figure 3.3.9: Intensity of the induced electric field for different cavity sizes of the second geometry at the energy of the maximal
intensity peak, (a) cavity of 5.0Å at 2.28 eV, (b) cavity of 10.0Å at 2.66 eV, (c) cavity of 15.0Å at 2.69 eV, and (d) cavity of
20.0Å at 2.7 eV.

The electric field enhancement for the Na20 clusters shows a similar behavior than that of the Na8
dimer. By comparing Figure 3.3.7d and Figure 3.2.11c, one can notice that the enhancement in the case
of Na20 is slightly larger (∼ 150 and 172) than that of Na8 (∼ 122).The energy shift shown in Figure
3.3.7c moves the main peak of the intensity from ∼ 2.2 eV for small cavity sizes to ∼ 3.2 eV for larger
cavity sizes with a big gap (2.3 −→ 3.15) between 4 and 5 Å. This gap is caused by the presence of a
second peak at 4 Å at the energy ∼ 3.15 eV. The shift, therefore, is rather abrupt and discontinuous.
The intensity of this second peak is increasing until ∼ 7.0 Å and shifts slightly to higher energy (Figure
3.3.7a). The first peak, present for small cavity sizes, shifts to higher energy (from 2.2 −→ 2.8 eV) and
its intensity increases until 7 Å. However, it is less much weaker than the second peak.
The maximum intensity for the first geometry is around a cavity size of 7Å, while for the second geometry,
it is for a cavity size around 8Å as shown in Figure 3.3.7d. For Na8 clusters the maximum intensity occurs
for a distance of 9Å between the clusters (fig. 3.2.11c). Nevertheless, as in the case of the Na8 cluster, for
distances larger than 9Å the intensity decays with a 1

d3 behavior showing the presence of the dipole-dipole
interactions.
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3.4 Na150 Cluster

Finally we have performed calculations for Na150 cluster. The particularity of this cluster is its larger
size compared to the previous calculations which makes expect larger field enhancement. The geometry
of this cluster was taken from Ref.[38].

(a)
(b)

Figure 3.4.1: Geometry of the Na150 cluster (a) in the plane z = 0, (b) in 3 dimensions.

Figure 3.4.2: Geometry of the Na150 cavity in the plane z = 0, The distance d between the two clusters is taken from the edge
atoms.

3.4.1 Polarizability

The analysis of the polarizability of the Na150 cavity only shows a small red shift compared to that of the
smaller clusters. The average of the imaginary part of the polarizability shown in the contour plot 3.4.3a
and Figure 3.4.5a, is characterized by this small energy shift from 3.55 eV for small cavity sizes to 3.3 eV
for larger cavity sizes. As for smaller clusters, Pxx and Pzz matrix elements are almost not shifted, and
the resonance occurs at 3.5 eV (Figure 3.4.5b). The Pyy matrix element shows a much stronger variation.
On the contour plot 3.4.3b and Figure 3.4.5c, one can see that for very small distances between the two
clusters, Pyy shows two peaks, one at the energy 1.85 eV and the other one at 3.35 eV. The peak at small
energy could be caused by the electrostatic interaction between the clusters; but one has to notice the
fast extinction of this peak when the distance increases (between 2Å and 3Å). Then when the cavity size
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is larger than 5Å, one can observe only one peak that is slightly shifted (from 3.11 eV at 5Å to 3.3 eV at
15 Å). The shape of the Pzz matrix element is almost not changing with the cavity size (Figure 3.4.5d).
Nevertheless, a small shift of the peak from 3.6 eV at 1 Å to 3.5 eV at 15 Å can be seen. This shifts has
been observed in the small model presented in section 2.4, but for the Na150 the shifts amplitude is smaller
than for the dipole model and for the Na8 and Na20 clusters. Low amplitude shifts can be explained by
the fact that other modes than the dipole-dipole interaction mode are present for large clusters. The
fast disappearance of the low energy peak with the cavity size increases also point to the importance of
electron tunneling and chemical interactions for those very small distances (notice that typical Na-Na
bond distances are of the order of 3 Å).

(a) (b)

Figure 3.4.3: Contour plots of the average polarizability (a) and Pyy of the two Na150 clusters vs the distance d between the
clusters.

(a) (b) (c) (d)

Figure 3.4.4: Electric field enhancement for different cavity sizes at the energy of the maximum polarizability peak, in the plane
z = 0 (a) cavity of 1.0Å at 1.85 eV, (b) cavity of 5.0Å at 3.08 eV, (c) cavity of 10.0Å at 3.185 eV and (d) cavity of 15.0Å at
3.22 eV.
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(a)

(b)

Figure 3.4.5
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(c)

(d)

Figure 3.4.5: Imaginary part of the linear polarizability of two Na150 clusters vs energy for several distances between the clusters.
The blue dotted lines represents the polarizability of one cluster multiply by two. (a) Average polarizability, (b) Pxx matrix element,
(c) Pyy matrix element, (d) Pzz matrix element.
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3.4.2 Electric field Enhancement

Compared to smaller clusters, the electric field enhancement of the Na150 dimer is quite larger, as shown
in Figure 3.4.6c (compare to Figure 3.2.11c for Na8, and Figure 3.3.7d for Na20). The contour plot 3.4.6a
and Figure 3.4.6c show that there is a large field enhancement for a cavity size from 4.0 Å to 9.0 Å with
a maximal enhancement of 590 around 6.0 Å. This distance is slightly smaller that for Na8 (around 8 Å)
and for Na20 (around 9Å). Another interesting result is the large energy shift shown in Figure 3.4.6b. For
a cavity size of 1Å the maximal intensity peak appear at an energy of 1.85 eV, while for large cavity size,
the peak converge to the one molecule value which is 3.3 eV, therefore, an energy difference of 2.45eV.
While for the Na8 and Na20, the shift are 0.7 eV and 1eV respectively (Figures 3.2.11b and 3.3.7c). This
shift follows the same shape than the one of the Pyy matrix element. Thus, as for smaller clusters, induced
electric field and Pyy are strongly connected. Figure 3.4.4 shows the electric field distribution for several
cavity sizes at their maximal intensity peak given in Figure 3.4.6b. One can notice that contrary to the
smaller clusters, the electric field enhancement is mainly situated in the center of the cavity and not
distributed inside the clusters. This is a consequence of the fact that the field enhancement is still strong
for large distances (the ratio of induced field intensity and the external field intensity is 38 for a cavity of
18 Å, while for the same cavity, the ratio for Na8 is 5 and 10 for Na20).

(a)

(b) (c)

Figure 3.4.6: (a) Contour plot of the electric field enhancement of two Na150 clusters vs the cavity size, (b) evolution of the energy
of the maximal intensity peak, and (c) evolution of the maximal intensity (the energy for a given distance is given in figure 3.4.6b)
when the size of the cavity formed by the two Na150 clusters increases. The blue dots are the data for the one cluster calculations,
while the red dots are calculations for the two clusters.
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Chapter 4

Conclusion

In this thesis the absorption cross-section and the electric field enhancement were analyzed for four Na
dimmers (Na2, Na8, Na20, and Na150) with a new implementation of TDDFT in the linear response regime.
Thanks to the low computational cost of our new TDDFT implementation we were able to perform a
detailed analysis of the density change and the induced electric field distribution. In this master thesis
a summary of the theory used for the response calculation and the implementation of the electric field
enhancement was presented. In this first part, we first explained the principles of the time-dependent
perturbation theory that is used to derive an expression for the absorption cross-section. The basics of
DFT and TDDFT were also presented and used to derive expressions for the frequency-dependent induced
density change and the corresponding induced electric field. Finally, we analyzed a small model of two
interacting dipoles in order to compare with our TDDFT results.

After this brief description of the theory, our ab-initio calculations obtained with this new implemen-
tation of TDDFT were presented. We analyzed the optical response of four sodium dimers. From these
calculations we have been able to demonstrate that the atomic structure of the metal clusters plays a key
role for determining accurately both the absorption cross-section and electric field enhancement. First,
we have shown that the optical properties of the dimer of Na2 molecules, with a density distribution
similar to that of a dipole, are consistent with the results provided by the simple model. Moreover, the
polarizability of the Na8 is in good agreement with previous calculations. This two cross-checks give us
confidence in our new TDDFT implementation. Then, the polarizability for the three dimers as function
of the distance between the clusters for an energy range between 0 and 7 eV were studied. It was shown
that at large distances only one polarizability peak is observable for the three dimers and that the polar-
izability converges to twice the value of the polarizability of one cluster, which is the expected result. At
small distances, however, several peaks have been observed, which shows the presence of dipolar modes
as well as other modes. Finally, our calculations of the electric field enhancement for the three dimers
follow a similar shape than the polarizability with only one peak at large distance. Moreover, unlike the
polarizability, we have seen that the field enhancement decreases rapidely at large distance with a maxi-
mum around 8Å. Furthermore, the electric field enhancement shows a dependence with the orientation of
the clusters respect to the external field. The size of the clusters play also an important role on the field
enhancement. We showed that Na150 clusters exhibit a higher electric field enhancement in the cavity
center than Na8 and Na20.

For a future investigation, it would be very interesting to first analyze the cross-section and electric
field enhancement for other species, like large silver clusters, in order to find a system which provides the
largest field enhancements. Furthermore, the analysis of the effect of a molecule placed in the center of
the nanocavity on the field enhancement distribution can be relevant for the study of Surface Enhanced
Raman Scattering. In particular, we will study the effect of an aromatic molecule in a cavity for different
orientations of the molecule.
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Another interesting idea would be to analyze the conductance and the impact in the optical response,
between the two clusters when they are linked by a bridge of atoms. The variation of the conductance as
function of the bridge thickness would provide valuable information.
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Appendix A

Response Function in a Basis of
Dominant Products

The expression for the density change (2.98) involves the interacting response function χ(r, r′,ω). In order
to find this function, one should solve a similar equation to the Dyson’s equation[42] with the Random
phase approximation

χ(r, r′,ω) = χ0(r, r′,ω) +
ˆ
χ0(r, r′,ω)KHxc(r′′, r′′′)χ(r′′′, r′,ω)dr′′dr′′′ (A.1)

Where the non-interacting response function χ0(ω) and the interaction kernel KHxc are present. In
our work, the Hartree-exchange-correlation kernel KHxc is independent on frequency because the simple
adiabatic LDA is assumed for the exchange-correlation functional. The non-interacting response function
χ0(r, r′,ω) is expressed in terms of sums over eigen states ψi(r) of the Kohn-Sham Hamiltonian[43]

χ0(r, r′,ω) =
∑
i,j

(ni − nj)
ψ∗i (r)ψj(r)ψ∗j (r)ψi(r′)
ω − (Ej − Ei) + iε

(A.2)

Here ε is a broadening constant, i and j enumerate the Kohn-Sham eigen-states. Ei and ni denote the
eigen-energy and the occupation number of the Kohn-Sham eigen-state i. Both interacting and non-
interacting response functions have been expanded in terms of a basis of dominant products[33]

χ0(r, r′,ω) =
∑
µν

Fµ(r)χ0
µν(ω)F ν(r′) (A.3)

The basis functions Fµ(r) obey a radial-angular decomposition analogous to usual atom-centered orbitals.
Dominant products span the space of products of the localized orbitals[33, 44] and maintain their locality

fa(r)f b(r) =
∑
µ

V ab
µ Fµ(r) (A.4)

By inserting the expansion (A.3) into the equation (A.1)

χµν(ω) = χ0
µν(ω) +

∑
µ′ν′

χ0
µµ′(ω)Kµ′ν′

Hxcχν′ν(ω) (A.5)
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And one gets the following relations

χ0(r, r′,ω) =
∑
µν

χ0
µν(ω)Fµ(r)F ν(r′), (A.6)

χ(r, r′,ω) =
∑
µν

χµν(ω)Fµ(r)F ν(r′), (A.7)

δn(r,ω) = δnµ(ω)Fµ(r). (A.8)
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Appendix B

Pseudo-Potential

The pseudo-potential was calculated using the ATOM program[45], the file head is,

1 Na ca nrl nc
2 ATM3 13-MAR-14 Troullier-Martins
3 3s 1.00 r= 2.94/3p 0.00 r= 2.94/3d 0.00 r= 2.94/4f 0.00 r= 2.94/
4 4 0 1054 0.225341106970E-03 0.125000000000E-01 1.00000000000
5 Radial grid follows

The first line gives the atomic configuration

• Na is the specie label.

• ca stands for Ceperley-Alder functional[36].

• nrl stand for non-relativistic calculation.

• nc stand for no-core correction.

The shell radii are given in line 3 and resume in table B.1

Table B.1: Shell radii of the Na pseudo-potential

shell radii (Å)
3s 2.94
3p 2.94
3d 2.94
4f 2.94
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Appendix C

Convergence of the Electric Field

In this appendix, the convergence of the intensity of the induced electric field as function of the grid
fineness is shown. The convergence test was performed with a N2 dimer, the broadening constant was
set to ε = 0.033 eV (default value). The electric field enhancement was calculated in the center of the
molecule at the maximum intensity peak (ω = 15.87 eV), the distance between the atoms in one molecule
is 1.098 Å and the distance between the molecule is 4.0 Å.

Figure C.0.1: Evolution of the induced electric field as function of the spatial precision dr . The spatial step is changing in the
three directions at the same time and dx = dy = dz = dr . The test was done with a simple N2 dimer.

From figure C.0.1, one can conclude that below a precision of 0.4 Bohr, the results are converging.
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